48 research outputs found

    In Vitro Interaction of the Housekeeping SecA1 with the Accessory SecA2 Protein of Mycobacterium tuberculosis

    Get PDF
    The majority of proteins that are secreted across the bacterial cytoplasmic membrane leave the cell via the Sec pathway, which in its minimal form consists of the dimeric ATP-driven motor protein SecA that associates with the protein-conducting membrane pore SecYEG. Some Gram-positive bacteria contain two homologues of SecA, termed SecA1 and SecA2. SecA1 is the essential housekeeping protein, whereas SecA2 is not essential but is involved in the translocation of a subset of proteins, including various virulence factors. Some SecA2 containing bacteria also harbor a homologous SecY2 protein that may form a separate translocase. Interestingly, mycobacteria contain only one SecY protein and thus both SecA1 and SecA2 are required to interact with SecYEG, either individually or together as a heterodimer. In order to address whether SecA1 and SecA2 cooperate during secretion of SecA2 dependent proteins, we examined the oligomeric state of SecA1 and SecA2 of Mycobacterium tuberculosis and their interactions with SecA2 and the cognate SecA1, respectively. We conclude that both SecA1 and SecA2 individually form homodimers in solution but when both proteins are present simultaneously, they form dissociable heterodimers

    Characterization of the annular lipid shell of the Sec translocon

    Get PDF
    The bacterial Sec translocase in its minimal form consists of a membrane-embedded protein-conducting pore SecYEG that interacts with the motor protein SecA to mediate the translocation of secretory proteins. In addition, the SecYEG translocon interacts with the accessory SecDFyajC membrane complex and the membrane protein insertase YidC. To examine the composition of the native lipid environment in the vicinity of the SecYEG complex and its impact on translocation activity, styrene-maleic acid lipid particles (SMALPs) were used to extract SecYEG with its lipid environment directly from native Escherichia coli membranes without the use of detergents. This allowed the co-extraction of SecYEG in complex with SecA, but not with SecDFyajC or YidC. Lipid analysis of the SecYEG-SMALPs revealed an enrichment of negatively charged lipids in the vicinity of SecYEG, which in detergent assisted reconstitution of the Sec translocase are crucial for the translocation activity. Such lipid enrichment was not found with separately extracted SecDFyajC or YidC, which demonstrates a specific interaction between SecYEG and negatively charged lipids

    The cytoplasmic domain of the AAA+ protease FtsH is tilted with respect to the membrane to facilitate substrate entry

    Get PDF
    AAA+ proteases are degradation machines that use ATP hydrolysis to unfold protein substrates and translocate them through a central pore toward a degradation chamber. FtsH, a bacterial membrane-anchored AAA+ protease, plays a vital role in membrane protein quality control. How substrates reach the FtsH central pore is an open key question that is not resolved by the available atomic structures of cytoplasmic and periplasmic domains. In this work, we used both negative stain TEM and cryo-EM to determine 3D maps of the full-length Aquifex aeolicus FtsH protease. Unexpectedly, we observed that detergent solubilization induces the formation of fully active FtsH dodecamers, which consist of two FtsH hexamers in a single detergent micelle. The striking tilted conformation of the cytosolic domain in the FtsH dodecamer visualized by negative stain TEM suggests a lateral substrate entrance between the membrane and cytosolic domain. Such a substrate path was then resolved in the cryo-EM structure of the FtsH hexamer. By mapping the available structural information and structure predictions for the transmembrane helices to the amino acid sequence we identified a linker of ∼20 residues between the second transmembrane helix and the cytosolic domain. This unique polypeptide appears to be highly flexible and turned out to be essential for proper functioning of FtsH as its deletion fully eliminated the proteolytic activity of FtsH

    Structural basis for the role of Serine-Rich Repeat Proteins from Lactobacillus reuteri in gut microbe-host interactions

    Get PDF
    Lactobacillus reuteri, a Gram-positive bacterial species inhabiting the gastrointestinal tract of vertebrates displays remarkable host adaptation. Previous mutational analyses of rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP100-23) that was vital for L. reuteri biofilm formation in mice. SRRPs have emerged as an important group of surface proteins on many pathogens but no structural information is available in commensal bacteria. Here we report the 2.00 Å and 1.92 Å crystal structures of the binding regions (BRs) of SRRP100-23 and SRRP53608 from L. reuteri ATCC 53608, revealing a unique “β-solenoid” fold in this important adhesin family. BRSRRP53608 boundto host epithelial cells and DNA at neutral pH and recognised polygalacturonic acid (PGA), rhamnogalacturonan I or chondroitin sulfate A at acidic pH. Mutagenesis confirmed the role of the BR putative binding site in the interaction of BRSRRP53608 with PGA. Long molecular dynamics simulations showed that SRRP53608 undergoes a pH-dependent conformational change. Together, these findings shed new mechanistic insights into the role of SRRPs in host-microbe interactions and open new avenues of research into the use of biofilm-forming probiotics against clinically important pathogens

    The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes

    Get PDF
    Solubilisation of biological lipid bilayer membranes for analysis of their protein complement has traditionally been carried out using detergents, but there is increasing interest in the use of amphiphilic copolymers such as styrene maleic acid (SMA) for the solubilisation, purification and characterisation of integral membrane proteins in the form of protein/lipid nanodiscs. Here we survey the effectiveness of various commercially-available formulations of the SMA copolymer in solubilising Rhodobacter sphaeroides reaction centres (RCs) from photosynthetic membranes. We find that formulations of SMA with a 2:1 or 3:1 ratio of styrene to maleic acid are almost as effective as detergent in solubilising RCs, with the best solubilisation by short chain variants ( < 30 kDa weight average molecular weight). The effectiveness of 10 kDa 2:1 and 3:1 formulations of SMA to solubilise RCs gradually declined when genetically-encoded coiled-coil bundles were used to artificially tether normally monomeric RCs into dimeric, trimeric and tetrameric multimers. The ability of SMA to solubilise reaction centre-light harvesting 1 (RC-LH1) complexes from densely packed and highly ordered photosynthetic membranes was uniformly low, but could be increased through a variety of treatments to increase the lipid:protein ratio. However, proteins isolated from such membranes comprised clusters of complexes in small membrane patches rather than individual proteins. We conclude that short-chain 2:1 and 3:1 formulations of SMA are the most effective in solubilising integral membrane proteins, but that solubilisation efficiencies are strongly influenced by the size of the target protein and the density of packing of proteins in the membrane

    Examining the stability of membrane proteins within SMALPs

    Get PDF
    Amphipathic co-polymers such as styrene-maleic acid (SMA) have gained popularity over the last few years due to their ability and ease of use in solubilising and purifying membrane proteins in comparison to conventional methods of extraction such as detergents. SMA2000 is widely used for membrane protein studies and is considered as the optimal polymer for this technique. In this study a side-by-side comparison of SMA2000 with the polymer SZ30010 was carried out as both these polymers have similar styrene:maleic acid ratios and average molecular weights. Ability to solubilise, purify and stabilise membrane proteins was tested using three structurally different membrane proteins. Our results show that both polymers can be used to extract membrane proteins at a comparable efficiency to conventional detergent dodecylmaltoside (DDM). SZ30010 was found to give a similar protein yield and, SMALP disc size as SMA2000, and both polymers offered an increased purity and increased thermostability compared to DDM. Further investigation was conducted to investigate SMALP sensitivity to divalent cations. It was found that the sensitivity is polymer specific and not dependent on the protein encapsulated. Neither is it affected by the concentration of SMALPs. Larger divalent cations such as Co2+ and Zn2+ resulted in an increased sensitivity

    Encapsulated membrane proteins: a simplified system for molecular simulation

    Get PDF
    Over the past 50 years there has been considerable progress in our understanding of biomolecular interactions at an atomic level. This in turn has allowed molecular simulation methods employing full atomistic modeling at ever larger scales to develop. However, some challenging areas still remain where there is either a lack of atomic resolution structures or where the simulation system is inherently complex. An area where both challenges are present is that of membranes containing membrane proteins. In this review we analyse a new practical approach to membrane protein study that offers a potential new route to high resolution structures and the possibility to simplify simulations. These new approaches collectively recognise that preservation of the interaction between the membrane protein and the lipid bilayer is often essential to maintain structure and function. The new methods preserve these interactions by producing nano-scale disc shaped particles that include bilayer and the chosen protein. Currently two approaches lead in this area: the MSP system that relies on peptides to stabilise the discs, and SMALPs where an amphipathic styrene maleic acid copolymer is used. Both methods greatly enable protein production and hence have the potential to accelerate atomic resolution structure determination as well as providing a simplified format for simulations of membrane protein dynamics

    Durable vesicles for reconstitution of membrane proteins in biotechnology

    Get PDF
    The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with

    A quantitative assay to study the lipid selectivity of membrane-associated systems using solution NMR

    Get PDF
    The activity of membrane proteins and compounds that interact with the membrane is modulated by the surrounding lipid composition. However, there are no simple methods that determine the composition of these annular phospholipids in eukaryotic systems. Herein, we describe a simple methodology that enables the identification and quantification of the lipid composition around membrane-associated compounds using SMA-nanodiscs and routine 1H31PNMR^1H-^{31}P NMR

    Membrane protein extraction and purification using styrene-maleic acid (SMA) co-polymer:effect of variations in polymer structure

    Get PDF
    The use of styrene maleic acid (SMA) co-polymers to extract and purify transmembrane proteins, whilst retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene to maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA) which vary in size and shape were used. Our results show that several polymers can be used to extract membrane proteins comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular weight (7.5-10 kDa) is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification SMA 2000 was found to be the best choice for yield, purity and function. However the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications
    corecore