143 research outputs found
Beyond Conventional Event-related Brain Potential (ERP): Exploring the Time-course of Visual Emotion Processing Using Topographic and Principal Component Analyses
Recent technological advances with the scalp EEG methodology allow researchers to record electric fields generated in the human brain using a large number of electrodes or sensors (e.g. 64-256) distributed over the head surface (multi-channel recording). As a consequence, such high-density ERP mapping yields fairly dense ERP data sets that are often hard to analyze comprehensively or to relate straightforwardly to specific cognitive or emotional processes, because of the richness of the recorded signal in both the temporal (millisecond time-resolution) and spatial (multidimensional topographic information) domains. Principal component analyses (PCA) and topographic analyses (combined with distributed source localization algorithms) have been developed and successfully used to deal with this complexity, now offering powerful alternative strategies for data-driven analyses in complement to more traditional ERP analyses based on waveforms and peak measures. In this paper, we first briefly review the basic principles of these approaches, and then describe recent ERP studies that illustrate how they can inform about the precise spatio-temporal dynamic of emotion processing. These studies show that the perception of emotional visual stimuli may produce both quantitative and qualitative changes in the electric field configuration recorded at the scalp level, which are not apparent when using conventional ERP analyses. Additional information gained from these approaches include the identification of a sequence of successive processing stages that may not fully be reflected in ERP waveforms only, and the segregation of multiple or partly overlapping neural events that may be blended within a single ERP waveform. These findings highlight the added value of such alternative analyses when exploring the electrophysiological manifestations of complex and distributed mental functions, as for instance during emotion processin
Cue-dependent circuits for illusory contours in humans.
Objects' borders are readily perceived despite absent contrast gradients, e.g. due to poor lighting or occlusion. In humans, a visual evoked potential (VEP) correlate of illusory contour (IC) sensitivity, the "IC effect", has been identified with an onset at ~90ms and generators within bilateral lateral occipital cortices (LOC). The IC effect is observed across a wide range of stimulus parameters, though until now it always involved high-contrast achromatic stimuli. Whether IC perception and its brain mechanisms differ as a function of the type of stimulus cue remains unknown. Resolving such will provide insights on whether there is a unique or multiple solutions to how the brain binds together spatially fractionated information into a cohesive perception. Here, participants discriminated IC from no-contour (NC) control stimuli that were either comprised of low-contrast achromatic stimuli or instead isoluminant chromatic contrast stimuli (presumably biasing processing to the magnocellular and parvocellular pathways, respectively) on separate blocks of trials. Behavioural analyses revealed that ICs were readily perceived independently of the stimulus cue-i.e. when defined by either chromatic or luminance contrast. VEPs were analysed within an electrical neuroimaging framework and revealed a generally similar timing of IC effects across both stimulus contrasts (i.e. at ~90ms). Additionally, an overall phase shift of the VEP on the order of ~30ms was consistently observed in response to chromatic vs. luminance contrast independently of the presence/absence of ICs. Critically, topographic differences in the IC effect were observed over the ~110-160ms period; different configurations of intracranial sources contributed to IC sensitivity as a function of stimulus contrast. Distributed source estimations localized these differences to LOC as well as V1/V2. The present data expand current models by demonstrating the existence of multiple, cue-dependent circuits in the brain for generating perceptions of illusory contours
Gender and Weight Shape Brain Dynamics during Food Viewing
Hemodynamic imaging results have associated both gender and body weight to variation in brain responses to food-related information. However, the spatio-temporal brain dynamics of gender-related and weight-wise modulations in food discrimination still remain to be elucidated. We analyzed visual evoked potentials (VEPs) while normal-weighted men (n = 12) and women (n = 12) categorized photographs of energy-dense foods and non-food kitchen utensils. VEP analyses showed that food categorization is influenced by gender as early as 170 ms after image onset. Moreover, the female VEP pattern to food categorization co-varied with participants' body weight. Estimations of the neural generator activity over the time interval of VEP modulations (i.e. by means of a distributed linear inverse solution [LAURA]) revealed alterations in prefrontal and temporo-parietal source activity as a function of image category and participants' gender. However, only neural source activity for female responses during food viewing was negatively correlated with body-mass index (BMI) over the respective time interval. Women showed decreased neural source activity particularly in ventral prefrontal brain regions when viewing food, but not non-food objects, while no such associations were apparent in male responses to food and non-food viewing. Our study thus indicates that gender influences are already apparent during initial stages of food-related object categorization, with small variations in body weight modulating electrophysiological responses especially in women and in brain areas implicated in food reward valuation and intake control. These findings extend recent reports on prefrontal reward and control circuit responsiveness to food cues and the potential role of this reactivity pattern in the susceptibility to weight gain
First valence, then arousal: the temporal dynamics of brain electric activity evoked by emotional stimuli
The temporal dynamics of the neural activity that implements the dimensions valence and arousal during processing of emotional stimuli were studied in two multi-channel ERP experiments that used visually presented emotional words (experiment 1) and emotional pictures (experiment 2) as stimulus material. Thirty-two healthy subjects participated (mean age 26.8 +/- 6.4 years, 24 women). The stimuli in both experiments were selected on the basis of verbal reports in such a way that we were able to map the temporal dynamics of one dimension while controlling for the other one. Words (pictures) were centrally presented for 450 (600) ms with interstimulus intervals of 1,550 (1,400) ms. ERP microstate analysis of the entire epochs of stimulus presentations parsed the data into sequential steps of information processing. The results revealed that in several microstates of both experiments, processing of pleasant and unpleasant valence (experiment 1, microstate #3: 118-162 ms, #6: 218-238 ms, #7: 238-266 ms, #8: 266-294 ms; experiment 2, microstate #5: 142-178 ms, #6: 178-226 ms, #7: 226-246 ms, #9: 262-302 ms, #10: 302-330 ms) as well as of low and high arousal (experiment 1, microstate #8: 266-294 ms, #9: 294-346 ms; experiment 2, microstate #10: 302-330 ms, #15: 562-600 ms) involved different neural assemblies. The results revealed also that in both experiments, information about valence was extracted before information about arousal. The last microstate of valence extraction was identical with the first microstate of arousal extraction
One hundred years of EEG for brain and behaviour research
On the centenary of the first human EEG recording, more than 500 experts reflect on the impact that this discovery has had on our understanding of the brain and behaviour. We document their priorities and call for collective action focusing on validity, democratization and responsibility to realize the potential of EEG in science and society over the next 100 years
Contribution à l'étude des bourgeons dentaires chez la souris: I. Périodes d'induction et de morphodifférenciation
info:eu-repo/semantics/publishe
- …