282 research outputs found

    Mfd Protects Against Oxidative Stress in Bacillus Subtilis Independently of its Canonical Function in DNA Repair

    Get PDF
    Background: Previous reports showed that mutagenesis in nutrient-limiting conditions is dependent on Mfd in Bacillus subtilis. Mfd initiates one type of transcription-coupled repair (TCR); this type of repair is known to target bulky lesions, like those associated with UV exposure. Interestingly, the roles of Mfd in repair of oxidative-promoted DNA damage and regulation of transcription differ. Here, we used a genetic approach to test whether Mfd protected B. subtilis from exposure to two different oxidants. Results: Wild-type cells survived tert-butyl hydroperoxide (t-BHP) exposure significantly better than Mfd-deficient cells. This protective effect was independent of UvrA, a component of the canonical TCR/nucleotide excision repair (NER) pathway. Further, our results suggest that Mfd and MutY, a DNA glycosylase that processes 8-oxoG DNA mismatches, work together to protect cells from lesions generated by oxidative damage. We also tested the role of Mfd in mutagenesis in starved cells exposed to t-BHP. In conditions of oxidative stress, Mfd and MutY may work together in the formation of mutations. Unexpectedly, Mfd increased survival when cells were exposed to the protein oxidant diamide. Under this type of oxidative stress, cells survival was not affected by MutY or UvrA. Conclusions: These results are significant because they show that Mfd mediates error-prone repair of DNA and protects cells against oxidation of proteins by affecting gene expression; Mfd deficiency resulted in increased gene expression of the OhrR repressor which controls the cellular response to organic peroxide exposure. These observations point to Mfd functioning beyond a DNA repair factor in cells experiencing oxidative stress

    Small scale fracture of bone to understand the effect of fibrillar organization on toughness

    Get PDF
    Fracture toughness is a critical component of bone quality and derives from the hierarchical arrangement of collagen and mineral from the molecular level to the whole bone level. Molecular defects, disease, and age affect bone toughness, yet there is currently no treatment to address deficits in toughness. Toughening mechanisms occur at every length scale, making it difficult to isolate the influence of specific components. Most experimental studies on the fracture behaviour of bone use milled samples of bone or whole bones. Toughness deficits can be identified but may be caused by a multitude of parameters across length-scales, making it difficult to develop targeted therapies. Herein, we measure the toughness of bone in micropillars where porosity and heterogeneities are minimized, allowing us to determine the role of fibril anisotropy on fracture toughness. Double cantilever beam micromechanical tests were conducted in a scanning electron microscope on 4x6x15 mm pillars of mouse bone femorae produced in the longitudinal and transverse orientations. Subsequent transmission electron microscopy of the fractured pillars revealed a role of the local organization of the mineralized collagen fibrils in influencing crack propagation. We demonstrate that fibril orientation is a critical factor in deflection during crack propagation, significantly contributing to fracture toughness

    Nanostructured alumina from freeze-dried precursors

    Get PDF
    Nanocrystalline alumina has been obtained on the 100-g scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous solutions of different aluminium-containing products,namely aluminium acetate and aluminium L-lactate. Samples prepared at different temperatures (from 873 to 1573 K in steps of 100 K) were characterized by X-ray powder diffraction, scanning and transmission electron microscopy, and surface area measurements. In the acetate case, the transformation sequence involves the formation of q-Al2O3 as an intermediate phase between g- and a-Al2O3, whereas this q phase is not observed in the lactate case. TEM and SEM images show the nanoparticulate character of the aluminas obtained at relatively low temperatures, with typical particle size in the 5 to 10 nm range. Progressive grain growth occurs as temperature increases. Otherwise, the precursor characteristics have a clear influence on the microstructure of the resulting aluminas , as reflected also by the measured BET surface area values. Whereas long aluminium acetate fibres results in open arrays of low aggregated alumina particles, large aluminium lactate sheets lead to comparatively compact alumina microstructures. Nanostructured alumina obtained from the lactate precursor has been to reconstituted in a granulated powder with sufficient consistence and flowability to allow it to be thermal sprayed and deposited on a stainless steel substrate. X-ray powder diffraction data show that g-Al2O3 is the major phase in the coating, which includes also a-Al2O3 particles. SEM results offer evidences on the nanostructured character of the coating

    Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    Get PDF
    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 1015 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures

    Parametric Conductance Correlation for Irregularly Shaped Quantum Dots

    Full text link
    We propose the autocorrelator of conductance peak heights as a signature of the underlying chaotic dynamics in quantum dots in the Coulomb blockade regime. This correlation function is directly accessible to experiments and its decay width contains interesting information about the underlying electron dynamics. Analytical results are derived in the framework of random matrix theory in the regime of broken time-reversal symmetry. The final expression, upon rescaling, becomes independent of the details of the system. For the situation when the external parameter is a variable magnetic field, the system-dependent, nonuniversal field scaling factor is obtained by a semiclassical approach. The validity of our findings is confirmed by a comparison with results of an exact numerical diagonalization of the conformal billiard threaded by a magnetic flux line.Comment: Minor corrections added to the text and references (36 pages RevTeX 3, epsf, 10 figure

    A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope

    Get PDF
    Globular clusters with their large populations of millisecond pulsars (MSPs) are believed to be potential emitters of high-energy gamma-ray emission. Our goal is to constrain the millisecond pulsar populations in globular clusters from analysis of gamma-ray observations. We use 546 days of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular clusters. Steady point-like high-energy gamma-ray emission has been significantly detected towards 8 globular clusters. Five of them (47 Tucanae, Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices (0.7<Γ<1.4)(0.7 < \Gamma <1.4) and clear evidence for an exponential cut-off in the range 1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral indices (1.0<Γ<1.7)(1.0 < \Gamma < 1.7), however the presence of an exponential cut-off can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC 6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral properties. From the observed gamma-ray luminosities, we estimate the total number of MSPs that is expected to be present in these globular clusters. We show that our estimates of the MSP population correlate with the stellar encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters, commensurate with previous estimates. The observation of high-energy gamma-ray emission from a globular cluster thus provides a reliable independent method to assess their millisecond pulsar populations that can be used to make constraints on the original neutron star X-ray binary population, essential for understanding the importance of binary systems in slowing the inevitable core collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J. Kn\"odlseder, N. Webb, B. Pancraz

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    “Still good life”: On the value of reuse and distributive labor in “depleted” rural Maine

    Get PDF
    This article explores the production of wealth through distributive labor in Maine\u27s secondhand economy. While reuse is often associated with economic disadvantage, our research complicates that perspective. The labor required to reclaim, repair, redistribute, and reuse secondhand goods provides much more than a means of living in places left behind by international capitalism, but the value generated by this work is persistently discounted by dominant economic logics. On the basis of semistructured interviews, participant observation, and statewide surveys with reuse market participants in Maine, we find that the relational value of reuse, produced through caring, flexible, distributive labor, is especially significant. We argue that paying attention to the practices, politics, and value of distribution is critical for understanding wealth in communities perceived to have been left behind by global capitalist systems, particularly as wage labor opportunities and natural resources grow increasingly scarce

    Successful Interruption of Transmission of Onchocerca volvulus in the Escuintla-Guatemala Focus, Guatemala

    Get PDF
    Brought to the Americas from Africa by the slave trade, onchocerciasis is present in six countries in Latin America. The disease is caused by a round worm and is transmitted to humans by the bite of an infected black fly. Once in a human, the adult worms produce larvae that circulate through the body, causing itching or even blindness. Ivermectin, a drug that kills the larvae, is delivered by public health authorities in countries where the disease is present. If the larvae are killed, then the disease cannot be transmitted to more people. People living in the Escuintla-Guatemala focus, a region in Guatemala where the disease was common, have been taking ivermectin for many years. The Ministry of Health of Guatemala believes that onchocerciasis is no longer being transmitted in the area. To prove that there is no more transmission of the disease, the authors examined the eyes of residents of the area to see if they could find any evidence of the worms. They also conducted analyses of blood in school children to see if they had ever been exposed to the worm, and they caught thousands of black flies and tested them to see if they were infected. These evaluations found no evidence of transmission of the disease in the Escuintla-Guatemala focus. As a result, local public health authorities can stop giving ivermectin and invest their human resources in other important diseases
    corecore