66 research outputs found
Manipulative experiments demonstrate how long-term soil moisture changes alter controls of plant water use
Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit (VPD) and soil moisture variations, and the generality of these effects across forest types and environments using four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water (REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Overall, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.Peer reviewe
ECOHYDROLOGICAL IMPLICATIONS OF WOODY PLANT ENCROACHMENT
vi, 582 hlm, 25 c
Tree water dynamics in a drying and warming world
Disentangling the relative impacts of precipitation reduction and vapour pressure deficit (VPD) on plant water dynamics and determining whether acclimation may influence these patterns in the future is an important challenge. Here, we report sap flux density (FD), stomatal conductance (Gs), hydraulic conductivity (KL) and xylem anatomy in piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees subjected to five years of precipitation reduction, atmospheric warming (elevated VPD) and their combined effects. No acclimation occurred under precipitation reduction: lower Gs and FD were found for both species compared to ambient conditions. Warming reduced the sensibility of stomata to VPD for both species but resulted in the maintenance of Gs and FD to ambient levels only for piñon. For juniper, reduced soil moisture under warming negated benefits of stomatal adjustments and resulted in reduced FD, Gs and KL. Although reduced stomatal sensitivity to VPD also occurred under combined stresses, reductions in Gs, FD and KL took place to similar levels as under single stresses for both species. Our results show that stomatal conductance adjustments to high VPD could minimize but not entirely prevent additive effects of warming and drying on water use and carbon acquisition of trees in semi-arid regions.The Los Alamos Survival-Mortality (SUMO) Experiment was funded by the US Department of Energy, Office of Science, Biological and Environmental Research. C.G. and S.M. were supported by a Director’s Fellowship from the Los Alamos National Laboratory. A.V. was supported by a fellowship from Generalitat Valenciana (BEST/2016/289) and the project Survive-2 (CGL2015-69773-C2-2-P MINECO/FEDER) from the Spanish Government. CEAM is funded by Generalitat Valenciana
Mechanisms of a coniferous woodland persistence under drought and heat
Predictions of warmer droughts causing increasing forest mortality are becoming abundant, yet few studies have investigated the mechanisms of forest persistence. To examine the resistance of forests to warmer droughts, we used a five-year precipitation reduction (~45% removal), heat (+4 °C above ambient) and combined drought and heat experiment in an isolated stand of mature Pinus edulis-Juniperus monosperma. Despite severe experimental drought and heating, no trees died, and we observed only minor evidence of hydraulic failure or carbon starvation. Two mechanisms promoting survival were supported. First, access to bedrock water, or 'hydraulic refugia' aided trees in their resistance to the experimental conditions. Second, the isolation of this stand amongst a landscape of dead trees precluded ingress by Ips confusus, frequently the ultimate biotic mortality agent of piñon. These combined abiotic and biotic landscape-scale processes can moderate the impacts of future droughts on tree mortality by enabling tree avoidance of hydraulic failure, carbon starvation, and exposure to attacking abiotic agents.This project was supported by the Department of Energy, Office of Science, and Pacific Northwest National Lab’s LDRD program. DDB participation was supported via NSF EF-1340624; EF-1550756, and EAR-1331408, DEB-1824796 and DEB-1833502. CG was supported by a Director’s Fellowship from the Los Alamos National Laboratory and by the Swiss National Science Foundation SNF (PZ00P3_174068). AV was supported by a fellowship from Generalitat Valenciana (BEST/2016/289) and the project Survive-2 (CGL2015-69773-C2-2-P MINECO/FEDER) from the Spanish Government. DSM was supported via NSF IOS-1450679, IOS-1444571, and IOS-1547796
Recommended from our members
Evaluating theories of drought-induced vegetation mortality using a multimodel– experiment framework
Model–data comparisons of plant physiological processes provide an understanding of mechanisms underlying vegetation responses to climate. We simulated the physiology of a pi~non pine–juniper woodland (Pinus edulis–Juniperus monosperma) that experienced mortality during a 5 yr precipitation-reduction experiment, allowing a framework with which to examine our knowledge of drought-induced tree mortality. We used six models designed for scales ranging from individual plants to a global level, all containing state-of-the-art representations of the internal hydraulic and carbohydrate dynamics of woody plants. Despite the large range of model structures, tuning, and parameterization employed, all simulations predicted hydraulic failure and carbon starvation processes co-occurring in dying trees of both species, with the time spent with severe hydraulic failure and carbon starvation, rather than absolute thresholds per se, being a better predictor of impending mortality. Model and empirical data suggest that limited carbon and water exchanges at stomatal, phloem, and below-ground interfaces were associated with mortality of both species. The model–data comparison suggests that the introduction of a mechanistic process into physiology-based models provides equal or improved predictive power over traditional process-model or empirical thresholds. Both biophysical and empirical modeling approaches are useful in understanding processes, particularly when the models fail, because they reveal mechanisms that are likely to underlie mortality. We suggest that for some ecosystems, integration of mechanistic pathogen models into current vegetation models, and evaluation against observations, could result in a breakthrough capability to simulate vegetation dynamics.Keywords: carbon starvation, hydraulic failure, process-based models, cavitation, dynamic global vegetation models (DGVMs), die off, photosynthesi
Global transpiration data from sap flow measurements : the SAPFLUXNET database
Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe
Ecosystem-Scale Rainfall Manipulation in a Piñon-Juniper Forest at the Sevilleta National Wildlife Refuge, New Mexico: Volumetric Water Content (VWC) at 5 cm Depth Data (2006- )
Climate models predict that water limited regions around the world will become drier and warmer in the near future, including southwestern North America. We developed a large-scale experimental system that allows testing of the ecosystem impacts of precipitation changes. Four treatments were applied to 1600 m2 plots (40 m × 40 m), each with three replicates in a piñon pine (Pinus edulis) and juniper (Juniper monosperma) ecosystem. These species have extensive root systems, requiring large-scale manipulation to effectively alter soil water availability. Treatments consisted of: 1) irrigation plots that receive supplemental water additions, 2) drought plots that receive 55% of ambient rainfall, 3) cover-control plots that receive ambient precipitation, but allow determination of treatment infrastructure artifacts, and 4) ambient control plots. Our drought structures effectively reduced soil water potential and volumetric water content compared to the ambient, cover-control, and water addition plots. Drought and cover control plots experienced an average increase in maximum soil and air temperature at ground level of 1-4° C during the growing season compared to ambient plots, and concurrent short-term diurnal increases in maximum air temperature were also observed directly above and below plastic structures. Our drought and irrigation treatments significantly influenced tree predawn water potential, sap-flow, and net photosynthesis, with drought treatment trees exhibiting significant decreases in physiological function compared to ambient and irrigated trees. Supplemental irrigation resulted in a significant increase in both plant water potential and xylem sap-flow compared to trees in the other treatments. This experimental design effectively allows manipulation of plant water stress at the ecosystem scale, permits a wide range of drought conditions, and provides prolonged drought conditions comparable to historical droughts in the past – drought events for which wide-spread mortality in both these species was observed. Obviously, one of the important areas of interest in this experiment was the effects of elevated (greater-than-average) and decreased (less-than-average) precipitation levels on soil moisture. The volumetric water content of the soil was monitored across all twelve plots, all four treatment types, and all three cover types. The record created through these monitoring activities not only noted the initial “wetting-up” of the soil after a precipitation event but also tracked the “drying-down” of the soil after the event. The water content of the soil and its associated storage capacity could then provide a frame of reference in which changes in the physiological properties of our two target tree species, such as water potential and sapflow rate, could be interpreted
Warming-El Nino-Nitrogen Deposition Experiment (WENNDEx): Soil Moisture Data from the Sevilleta National Wildlife Refuge, New Mexico (1/2006-8/2009)
This data set provides soil moisture data in each plot of the warming experiment (see SEV176). Data are collected with automated soil moisture probes at 30-minute intervals at two soil depths under grass and bare patches in each of the 40 plots
Ecosystem-Scale Rainfall Manipulation in a Piñon-Juniper Forest at the Sevilleta National Wildlife Refuge, New Mexico: Meteorological Data (2006-2013)
Climate models predict that water limited regions around the world will become drier and warmer in the near future, including southwestern North America. We developed a large-scale experimental system that allows testing of the ecosystem impacts of precipitation changes. Four treatments were applied to 1600 m2 plots (40 m × 40 m), each with three replicates in a piñon pine (Pinus edulis) and juniper (Juniper monosperma) ecosystem. These species have extensive root systems, requiring large-scale manipulation to effectively alter soil water availability. Treatments consisted of: 1) irrigation plots that receive supplemental water additions, 2) drought plots that receive 55% of ambient rainfall, 3) cover-control plots that receive ambient precipitation, but allow determination of treatment infrastructure artifacts, and 4) ambient control plots. Our drought structures effectively reduced soil water potential and volumetric water content compared to the ambient, cover-control, and water addition plots. Drought and cover control plots experienced an average increase in maximum soil and air temperature at ground level of 1-4° C during the growing season compared to ambient plots, and concurrent short-term diurnal increases in maximum air temperature were also observed directly above and below plastic structures. Our drought and irrigation treatments significantly influenced tree predawn water potential, sap-flow, and net photosynthesis, with drought treatment trees exhibiting significant decreases in physiological function compared to ambient and irrigated trees. Supplemental irrigation resulted in a significant increase in both plant water potential and xylem sap-flow compared to trees in the other treatments. This experimental design effectively allows manipulation of plant water stress at the ecosystem scale, permits a wide range of drought conditions, and provides prolonged drought conditions comparable to historical droughts in the past – drought events for which wide-spread mortality in both these species was observed.A micrometeorological station was used to document the climatic conditions at the study site. Monitoring the ambient environment in this way allowed us to more easily determine which tree growth responses were driven by changes in the native climate as opposed to those resulting from the rainfall manipulation treatments. Environmental factors such as temperature, relative humidity, and photosynthetically active radiation (PAR) have a huge impact on the physiological processes that are being explored in this project. The data collected by the station created a local climatic record which was needed to provide the context in which the treatment effects can be examined and sensor readings can be interpreted
- …