34 research outputs found

    Using remote substituents to control solution structure and anion binding in lanthanide complexes.

    Get PDF
    A study of the anion-binding properties of three structurally related lanthanide complexes, which all contain chemically identical anion-binding motifs, has revealed dramatic differences in their anion affinity. These arise as a consequence of changes in the substitution pattern on the periphery of the molecule, at a substantial distance from the binding pocket. Herein, we explore these remote substituent effects and explain the observed behaviour through discussion of the way in which remote substituents can influence and control the global structure of a molecule through their demands upon conformational space. Peripheral modifications to a binuclear lanthanide motif derived from α,α′-bis(DO3 Ayl)-m-xylene are shown to result in dramatic changes to the binding constant for isophthalate. In this system, the parent compound displays considerable conformational flexibility, yet can be assumed to bind to isophthalate through a well-defined conformer. Addition of steric bulk remote from the binding site restricts conformational mobility, giving rise to an increase in binding constant on entropic grounds as long as the ideal binding conformation is not excluded from the available range of conformers

    Using Remote Substituents to Control Solution Structure and Anion Binding in Lanthanide Complexes

    Get PDF
    A study of the anion-binding properties of three structurally related lanthanide complexes, which all contain chemically identical anion-binding motifs, has revealed dramatic differences in their anion affinity. These arise as a consequence of changes in the substitution pattern on the periphery of the molecule, at a substantial distance from the binding pocket. Herein, we explore these remote substituent effects and explain the observed behaviour through discussion of the way in which remote substituents can influence and control the global structure of a molecule through their demands upon conformational space. Peripheral modifications to a binuclear lanthanide motif derived from α,α′-bis(DO3 Ayl)-m-xylene are shown to result in dramatic changes to the binding constant for isophthalate. In this system, the parent compound displays considerable conformational flexibility, yet can be assumed to bind to isophthalate through a well-defined conformer. Addition of steric bulk remote from the binding site restricts conformational mobility, giving rise to an increase in binding constant on entropic grounds as long as the ideal binding conformation is not excluded from the available range of conformers

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    Get PDF
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of pT > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of pT = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in pT, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung

    Alignment of the CMS tracker with LHC and cosmic ray data

    Get PDF
    © CERN 2014 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation and DOI.The central component of the CMS detector is the largest silicon tracker ever built. The precise alignment of this complex device is a formidable challenge, and only achievable with a significant extension of the technologies routinely used for tracking detectors in the past. This article describes the full-scale alignment procedure as it is used during LHC operations. Among the specific features of the method are the simultaneous determination of up to 200 000 alignment parameters with tracks, the measurement of individual sensor curvature parameters, the control of systematic misalignment effects, and the implementation of the whole procedure in a multi-processor environment for high execution speed. Overall, the achieved statistical accuracy on the module alignment is found to be significantly better than 10μm

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    CCDC 728845: Experimental Crystal Structure Determination

    No full text
    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures

    An aryl-phosphonate appended macrocyclic platform for lanthanide based bimodal imaging agents

    No full text
    Four ligand systems have been prepared whose characteristics are well suited to the design of bimodal MRI and luminescence probes. The lanthanide complexes display high relaxivities and luminescence quantum yields. These properties are retained at higher magnetic fields and in a range of competitive environments including model extracellular medium and cultured cells
    corecore