15 research outputs found

    Integrating new approaches to atrial fibrillation management: the 6th AFNET/EHRA Consensus Conference.

    Get PDF
    There are major challenges ahead for clinicians treating patients with atrial fibrillation (AF). The population with AF is expected to expand considerably and yet, apart from anticoagulation, therapies used in AF have not been shown to consistently impact on mortality or reduce adverse cardiovascular events. New approaches to AF management, including the use of novel technologies and structured, integrated care, have the potential to enhance clinical phenotyping or result in better treatment selection and stratified therapy. Here, we report the outcomes of the 6th Consensus Conference of the Atrial Fibrillation Network (AFNET) and the European Heart Rhythm Association (EHRA), held at the European Society of Cardiology Heart House in Sophia Antipolis, France, 17-19 January 2017. Sixty-two global specialists in AF and 13 industry partners met to develop innovative solutions based on new approaches to screening and diagnosis, enhancing integration of AF care, developing clinical pathways for treating complex patients, improving stroke prevention strategies, and better patient selection for heart rate and rhythm control. Ultimately, these approaches can lead to better outcomes for patients with AF

    Characterisation of methane sources in Lutjewad, The Netherlands, using quasi-continuous isotopic composition measurements

    Get PDF
    Despite the importance of methane for climate change mitigation, uncertainties regarding the temporal and spatial variability of the emissions remain. Measurements of CH4 isotopic composition are used to partition the relative contributions of different emission sources. We report continuous isotopic measurements during 5 months at the Lutjewad tower (north of the Netherlands). Time-series of χ(CH4), δ13C-CH4, and δD-CH4 in ambient air were analysed using the Keeling plot method. Resulting source signatures ranged from −67.4 to −52.4‰ vs V-PDB and from −372 to −211‰ vs V-SMOW, for δ13C and δD respectively, indicating a prevalence of biogenic sources. Analysis of isotope and wind data indicated that (i) emissions from off-shore oil and gas platforms in the North Sea were not detected during this period, (ii) CH4 from fossil fuel related sources was usually advected from the east, pointing towards the Groningen gas field or regions further east in Germany. The results from two atmospheric transport models, CHIMERE and FLEXPART-COSMO, using the EDGAR v4.3.2 and TNO-MACC III emission inventories, reproduce χ(CH4) variations relatively well, but the isotope signatures were over-estimated by the model compared to the observations. Accounting for geographical variations of the δ13C signatures from fossil fuel emissions improved the model results significantly. The difference between model and measured isotopic signatures was larger when using TNO-MACC III compared to EDGAR v4.3.2 inventory. Uncertainties in the isotope signatures of the sources could explain a significant fraction of the discrepancy, thus a better source characterisation could further strengthen the use of isotopes in constraining emissions

    Characterisation of methane sources in Lutjewad, The Netherlands, using quasi-continuous isotopic composition measurements

    Get PDF
    International audienceDespite the importance of methane for climate change mitigation, uncertainties regarding the temporal and spatial variability of the emissions remain. Measurements of CH4 isotopic composition are used to partition the relative contributions of different emission sources. We report continuous isotopic measurements during 5 months at the Lutjewad tower (north of the Netherlands). Time-series of χ(CH4), δ13C-CH4, and δD-CH4 in ambient air were analysed using the Keeling plot method. Resulting source signatures ranged from −67.4 to −52.4‰ vs V-PDB and from −372 to −211‰ vs V-SMOW, for δ13C and δD respectively, indicating a prevalence of biogenic sources. Analysis of isotope and wind data indicated that (i) emissions from off-shore oil and gas platforms in the North Sea were not detected during this period, (ii) CH4 from fossil fuel related sources was usually advected from the east, pointing towards the Groningen gas field or regions further east in Germany. The results from two atmospheric transport models, CHIMERE and FLEXPART-COSMO, using the EDGAR v4.3.2 and TNO-MACC III emission inventories, reproduce χ(CH4) variations relatively well, but the isotope signatures were over-estimated by the model compared to the observations. Accounting for geographical variations of the δ13C signatures from fossil fuel emissions improved the model results significantly. The difference between model and measured isotopic signatures was larger when using TNO-MACC III compared to EDGAR v4.3.2 inventory. Uncertainties in the isotope signatures of the sources could explain a significant fraction of the discrepancy, thus a better source characterisation could further strengthen the use of isotopes in constraining emissions

    Characterisation of methane sources in Lutjewad, The Netherlands, using quasi-continuous isotopic composition measurements

    No full text
    Despite the importance of methane for climate change mitigation, uncertainties regarding the temporal and spatial variability of the emissions remain. Measurements of CH4 isotopic composition are used to partition the relative contributions of different emission sources. We report continuous isotopic measurements during 5 months at the Lutjewad tower (north of the Netherlands). Time-series of χ(CH4), δ13C-CH4, and δD-CH4 in ambient air were analysed using the Keeling plot method. Resulting source signatures ranged from −67.4 to −52.4‰ vs V-PDB and from −372 to −211‰ vs V-SMOW, for δ13C and δD respectively, indicating a prevalence of biogenic sources. Analysis of isotope and wind data indicated that (i) emissions from off-shore oil and gas platforms in the North Sea were not detected during this period, (ii) CH4 from fossil fuel related sources was usually advected from the east, pointing towards the Groningen gas field or regions further east in Germany. The results from two atmospheric transport models, CHIMERE and FLEXPART-COSMO, using the EDGAR v4.3.2 and TNO-MACC III emission inventories, reproduce χ(CH4) variations relatively well, but the isotope signatures were over-estimated by the model compared to the observations. Accounting for geographical variations of the δ13C signatures from fossil fuel emissions improved the model results significantly. The difference between model and measured isotopic signatures was larger when using TNO-MACC III compared to EDGAR v4.3.2 inventory. Uncertainties in the isotope signatures of the sources could explain a significant fraction of the discrepancy, thus a better source characterisation could further strengthen the use of isotopes in constraining emissions

    Dramatic improvement in survival after lung transplantation over time: a single center experience.

    No full text
    International audienceLung transplantation (LT) is a recognized procedure for selected patients with end-stage respiratory failure. We performed 123 LT, including 32 single lung, 84 double lung, and 7 heart-lung transplantations in 48 patients with chronic obstructive pulmonary disease (COPD), 13 patients with pulmonary hypertension (PH), 33 with cystic fibrosis (CF), and 29 with interstitial lung disease (ILD) between July 1990 and January 2008. Survival was compared for periods before and after December 2001. The mean age of patients was 44.4 years (range 16-66.5 years); 84 (69%) were men. Before LT, 1 second forced expiratory volume was 28.7% +/- 18.1% and PaCO(2) = 6.3 kPa. Fifty-five patients were on noninvasive ventilation. Cold ischemia time was 320 +/- 91 minutes. Cardiopulmonary bypass (CPB) was used in 77 patients (64%). There were 18 early surgical reinterventions, 8 extracorporeal membrane oxygenations, and 38 bronchial stent insertions among 206 at-risk bronchial sutures. Crude survivals were 69%, 58%, 41%, and 18% at 1, 2, 5, and 10 years, respectively. Comparing before (n = 70 with 15 CF) vs after December 2001 (n = 53 with 17 CF), survivals were 63% vs 78%, 51% vs 71%, and 33% vs 60% at 1, 2, and 5 years, respectively (P = .01) and for CF patients, 52% vs 100%, 52% vs 94%, and 25% vs 94% at 1, 2, and 5 years, respectively (P = .005). There was significant improvement in survival before and after 2001 in 123 LT and particularly among CF patients. Improvement in survival after LT may be related to the sum of numerous changes in our practice since December 2001, including the use of pulmonary rehabilitation pre-LT, extracellular pneumoplegia, statins, macrolides for chronic rejection, monitoring of Epstein-Barr blood load, changes in maintenance immunosuppressants, as well as position movement up the coordinator nurse and learning curve

    A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion

    Get PDF
    This paper presents an analysis of the recent tropospheric molecular hydrogen (H2) budget with a particular focus on soil uptake and surface emissions. A variational inversion scheme is combined with observations from the RAMCES and EUROHYDROS atmospheric networks, which include continuous measurements performed between mid-2006 and mid-2009. Net H2 surface flux, soil uptake distinct from surface emissions and finally, soil uptake, biomass burning, anthropogenic emissions and N2 fixation-related emissions separately were inverted in several scenarios. The various inversions generate an estimate for each term of the H2 budget. The net H 2 flux per region (High Northern Hemisphere, Tropics and High Southern Hemisphere) varies between -8 and 8 Tg yr-1. The best inversion in terms of fit to the observations combines updated prior surface emissions and a soil deposition velocity map that is based on soil uptake measurements. Our estimate of global H2 soil uptake is -59 ± 4.0 Tg yr-1. Forty per cent of this uptake is located in the High Northern Hemisphere and 55% is located in the Tropics. In terms of surface emissions, seasonality is mainly driven by biomass burning emissions. The inferred European anthropogenic emissions are consistent with independent H 2 emissions estimated using a H2/CO mass ratio of 0.034 and CO emissions considering their respective uncertainties. To constrain a more robust partition of H2 sources and sinks would need additional constraints, such as isotopic measurements

    Three decades of global methane sources and sinks

    Get PDF
    Methane is an important greenhouse gas, responsible for about 20 of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios � which differ in fossil fuel and microbial emissions � to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain
    corecore