69 research outputs found

    Centriole assembly and the role of Mps1: defensible or dispensable?

    Get PDF
    The Mps1 protein kinase is an intriguing and controversial player in centriole assembly. Originally shown to control duplication of the budding yeast spindle pole body, Mps1 is present in eukaryotes from yeast to humans, the nematode C. elegans being a notable exception, and has also been shown to regulate the spindle checkpoint and an increasing number of cellular functions relating to genomic stability. While its function in the spindle checkpoint appears to be both universally conserved and essential in most organisms, conservation of its originally described function in spindle pole duplication has proven controversial, and it is less clear whether Mps1 is essential for centrosome duplication outside of budding yeast. Recent studies of Mps1 have identified at least two distinct functions for Mps1 in centriole assembly, while simultaneously supporting the notion that Mps1 is dispensable for the process. However, the fact that at least one centrosomal substrate of Mps1 is conserved from yeast to humans down to the phosphorylation site, combined with evidence demonstrating the exquisite control exerted over centrosomal Mps1 levels suggest that the notion of being essential may not be the most important of distinctions

    Piperazinium Chlorocuprates(I)

    Get PDF
    The formation from aqueous solution of networks containing piperazinium hydrochlorides with copper(I) chloride is described. Four new X-ray crystal structures are reported: (H2Pip)[Cu2Cl4] (two isomeric phases: 1A and 1B), (H2MePip)[Cu3Cl5] (2), and (H2Me2Pip)[Cu4Cl6] (3) (Pip = piperazine, MePip = N-methylpiperazine, Me2Pip = N,N′-dimethylpiperazine. In 1A (P-1, a = 6.3141(2), b = 6.8248(2), c = 6.9067(2), α = 90.707(2), β = 110.748(2), γ = 110.799(2), V = 256.918(13), Z = 2) corner-sharing Cu2Cl2 rhomboid dimers form infinite chains running parallel to the a-axis. In 1B (Pbcn, a = 9.9442(6), b = 8.0622(5), c = 13.1301(7), V = 1052.67(11), Z = 8) the Cu2Cl2 dimers are linked by μ-Cl into Cu6Cl8 rings which form hexagonally tiled sheets running parallel to the a,b-plane. In 2 (P-1, a = 8.0815(7), b = 9.6584(9), c = 9.7900(8), α = 70.231(4), β = 77.180(4), γ = 70.587(4), V = 673.05(10), Z = 2) alternating Cu3Cl3 and Cu4Cl4 rings are fused to form ribbons that run parallel to the a-axis. Copper-copper interactions are present. In 3 (C2/c, a = 17.4026(6), b = 10.5295(4), c = 11.7501(8), β = 131.5490(10), V = 1611.35(14), Z = 8) relatively long Cu···Cl interactions connect Cu4Cl6 “adamantane” units into chains running parallel to the c-axis. In all cases the piperazinium ions are independent from the chlorocuprate structures, but they do show N–H···Cl interactions

    Threaded Structure and Blue Luminescence of (CuCN)20(Piperazine)7

    Get PDF
    The structurally unique and highly luminescent 20 : 7 complex of CuCN with piperazine (Pip) was formed under aqueous conditions; its structure reveals two interpenetrated 2D sub-networks in 6 : 1 ratio: (CuCN)2(Pip) and (CuCN)8(Pip), the latter consisting of Cu18(CN)16(Pip)2 macrocycles

    Reversible Luminescent Reaction of Amines with Copper(i) Cyanide

    Get PDF
    Copper(I) cyanide exposed to various liquid or vapor-phase amines (L) at ambient temperature produces a variety of visible photoluminescence colors via reversible formation of amine adducts. The adducts show phase matches to authentic (CuCN)Ln, n = 0.75–2.0, produced by heating CuCN with liquid amine

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    CYP17 genetic polymorphism, breast cancer, and breast cancer risk factors: Australian Breast Cancer Family Study

    Get PDF
    INTRODUCTION: Because CYP17 can influence the degree of exposure of breast tissues to oestrogen, the interaction between polymorphisms in this gene and hormonal risk factors is of particular interest. We attempted to replicate the findings of studies assessing such interactions with the -34T→C polymorphism. METHODS: Risk factor and CYP17 genotyping data were derived from a large Australian population-based case-control-family study of 1,284 breast cancer cases and 679 controls. Crude and adjusted odds ratio (OR) estimates and 95% confidence intervals (CIs) were calculated by unconditional logistic regression analyses. RESULTS: We found no associations between the CYP17 genotype and breast cancer overall. Premenopausal controls with A(2)/A(2 )genotype had a later age at menarche (P < 0.01). The only associations near statistical significance were that postmenopausal women with A(1)/A(1 )(wild-type) genotype had an increased risk of breast cancer if they had ever used hormone replacement therapy (OR 2.40, 95% CI 1.0 to 5.7; P = 0.05) and if they had menopause after age 47 years (OR 2.59, 95% CI 1.0 to 7.0; P = 0.06). We found no associations in common with any other studies, and no evidence for interactions. CONCLUSION: We observed no evidence of effect modification of reproductive risk factors by CYP17 genotype, although the experiment did not have sufficient statistical power to detect small main effects and modest effects in subgroups. Associations found only in subgroup analyses based on relatively small numbers require cautious interpretation without confirmation by other studies. This emphasizes the need for replication in multiple and large population-based studies to provide convincing evidence for gene–environment interactions

    Evaluation of Candidate Stromal Epithelial Cross-Talk Genes Identifies Association between Risk of Serous Ovarian Cancer and TERT, a Cancer Susceptibility “Hot-Spot”

    Get PDF
    We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes involved in stromal epithelial interactions in the Ovarian Cancer Association Consortium (OCAC). In the discovery stage, cases with epithelial ovarian cancer (n = 675) and controls (n = 1,162) were genotyped at 1,536 SNPs using an Illumina GoldenGate assay. Based on Positive Predictive Value estimates, three SNPs—PODXL rs1013368, ITGA6 rs13027811, and MMP3 rs522616—were selected for replication using TaqMan genotyping in up to 3,059 serous invasive cases and 8,905 controls from 16 OCAC case-control studies. An additional 18 SNPs with Pper-allele<0.05 in the discovery stage were selected for replication in a subset of five OCAC studies (n = 1,233 serous invasive cases; n = 3,364 controls). The discovery stage associations in PODXL, ITGA6, and MMP3 were attenuated in the larger replication set (adj. Pper-allele≥0.5). However genotypes at TERT rs7726159 were associated with ovarian cancer risk in the smaller, five-study replication study (Pper-allele = 0.03). Combined analysis of the discovery and replication sets for this TERT SNP showed an increased risk of serous ovarian cancer among non-Hispanic whites [adj. ORper-allele 1.14 (1.04–1.24) p = 0.003]. Our study adds to the growing evidence that, like the 8q24 locus, the telomerase reverse transcriptase locus at 5p15.33, is a general cancer susceptibility locus

    Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of european ancestry

    Get PDF
    Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P &lt; 1 7 10(-6)), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 7 10(-11)) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 7 10(-10)). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region-the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r(2) = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case-case P 64 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer
    corecore