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Piperazinium Chlorocuprates(I). 

 

 

 

Jacob E. Kuperstock, Amanda N. Ley and Robert D. Pike*. 

Department of Chemistry, College of William and Mary, Williamsburg, VA 23187. 

 

Abstract  

 The formation from aqueous solution of networks containing piperazinium 

hydrochlorides with copper(I) chloride is described. Four new X-ray crystal structures are 

reported: (H2Pip)[Cu2Cl4] (two isomeric phases: 1A and 1B), (H2MePip)[Cu3Cl5] (2), and 

(H2Me2Pip)[Cu4Cl6] (3) (Pip = piperazine, MePip = N-methylpiperazine, Me2Pip = N,N´-

dimethylpiperazine. In 1A (P–1, a = 6.3141(2), b = 6.8248(2), c = 6.9067(2),  = 90.707(2),  = 

110.748(2),  = 110.799(2), V = 256.918(13), Z = 2) corner-sharing Cu2Cl2 rhomboid dimers 

form infinite chains running parallel to the a-axis. In 1B (Pbcn, a = 9.9442(6), b = 8.0622(5), c = 

13.1301(7), V = 1052.67(11), Z = 8) the Cu2Cl2 dimers are linked by -Cl into Cu6Cl8 rings 

which form hexagonally tiled sheets running parallel to the a,b plane. In 2 (P–1, a = 8.0815(7), b 

= 9.6584(9), c = 9.7900(8),  = 70.231(4),  = 77.180(4),  = 70.587(4), V = 673.05(10), Z = 2) 

alternating Cu3Cl3 and Cu4Cl4 rings are fused to form ribbons that run parallel to the a-axis. 

Copper-copper interactions are present. In 3 (C2/c, a = 17.4026(6), b = 10.5295(4), c = 

11.7501(8),  = 131.5490(10), V = 1611.35(14), Z = 8) relatively long Cu…Cl interactions 

connect Cu4Cl6 “adamantane” units into chains running parallel to the c-axis. In all cases the 

piperazinium ions are independent from the chlorocuprate structures, but they do show N–H…Cl 

interactions. 

 



 4 

 

Key Words: cuprate, piperazinium, polymer, polyanion, network 
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Introduction 

Transition metals readily form metallates through coordination of anionic ligands. 

Univalent Group 10 metals in particular are known to produce a wide range of oligomeric or 

polymeric polyhalides, [MnXn+y]y– (X = Cl, Br, I) and polysulfides, [M2nSn+y]2y–. Herein, we focus 

on halocuprate(I) anions, [CunXn+y]y–, of which a large number are known, the majority forming 

simple corner-sharing chains, I.1 In other cases, further catenation is observed, producing 

polymeric species such as II – VII.2–7 A few more unusual halocuprate arrangements have also 

been reported as well.8 Structures I – III are based solely on rhomboidal Cu2X2 units, which can 

share corners or edges, while the more complex structures VI – VII incorporate cyclic Cu3X3 and 

Cu4X4 units in addition to the ubiquitous Cu2X2. Terminal halides, such as seen in VI, are not 

common. The formation of 2D halocuprate networks is very rare with only three cases reported. 

Two of these are represented by structure VII, which consists of linked pairs of (6,3) hexagonal 

CuI sheets. All copper and iodide ions are 4-coordinate, forming edge-sharing (Cu2I2)3 propeller 

units having acute (<70o) Cu–I–Cu angles. The remaining 2D halocuprate is a truncated version 

of VII in which (Cu2Br2)3 propeller units are linked by infinite CuBr chains; acute Cu–Br–Cu 

angles are again present. No 3D halocuprates are known. 



 5 

Cu

X

Cu

X

X

X

X

X

Cu

X

Cu

X

I

Cu

X

Cu

X

X

X

X

X

Cu

X

Cu

X

Cu Cu

X XX

Cu Cu

X

II

Cu

X

Cu X

Cu

X

CuX

X
X

Cu

X

Cu X

Cu

X

CuX

X
X

III

V

Cu

X

Cu
X

Cu

X

X

X

X

Cu
Cu

X

Cu
X

Cu

X

X

X

X

Cu

VI

X

X

X

Cu

X

Cu

X

Cu

X

Cu

X

Cu

X

Cu

X

Cu

Cu

X

Cu

X

Cu

Cu

X

Cu

X

Cu

X

Cu

X

Cu

X

Cu

X

Cu

X

X

Cu

X

Cu

X

VII

X

Cu

Cu

X

X

Cu

Cu

XX

X

Cu

Cu

X

X

Cu

Cu

XX

IV

Cu

X

Cu

X

Cu

X

X

Cu

X

Cu

X

Cu

X

X X

Cu

X

Cu

 

Experimental 

Synthesis.  

 Piperazinium tetrachlorodicuprate(I) (1A) A 20 mL aqueous solution containing 

CuCl2•2H2O (0.852 g, 5.00 mmol) and NH2OH•HCl (0.348 g, 10.0 mmol) was warmed to about 

70 °C in an open vessel. A 15 mL aqueous solution of piperazine (C4H10N2, 0.431 g, 5.00 mmol) 

was added in drop-wise fashion. The blue-green color slowly discharged. The colorless solution 

was allowed to slowly cool first in a 40 °C water bath and then at room temperature, resulting in 
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the formation of crystals, which were collected by filtration and washed with 95% ethanol and 

then diethyl ether (0.604 g, 68.0%).  

Piperazinium tetrachlorodicuprate(I) (1B) was prepared under similar conditions to those 

used for 1A, except that 10.0 mmol piperazine was used. (0.238 g, 26.8%)  

N-Methylpiperazinium pentachlorotricuprate(I) (2) was prepared under similar 

conditions to those used for 1A, except that N-methylpiperazine was used (C5H12N2, 0.278 g, 

35.5%). 

N,N´-Dimethylpiperazinium hexachlorotetracuprate(I) (3) was prepared under similar 

conditions to those used for 1A, except that N,N´-dimethylpiperazine was used (C6H14N2, 0.332 

g, 45.5%). 

 

X-ray crystallography. 

Crystals were grown from the aqueous reaction mixtures as described above. Crystals 

were mounted on glass fibers. All measurements were made using graphite-monochromated Cu 

K radiation on a Bruker-AXS three-circle diffractometer, equipped with a SMART Apex II 

CCD detector. Initial space group determination was based on a matrix consisting of 120 frames. 

The data were reduced using SAINT+,9 and empirical absorption correction applied using 

SADABS.10  

Structures were solved using direct methods. Least-squares refinement for all structures 

was carried out on F2. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms in 

1A and 1B were located in the Fourier difference map and then allowed to refine isotropically; 

hydrogen atoms in 2 and 3 were placed in calculated positions attached to adjacent carbon and 

nitrogen atoms and allowed to refined isotropically as riding models. Structure solution, 

refinement and the calculation of derived results were performed using the SHELXTL package of 

computer programs.11 Packing diagrams were produced using Mercury.12 Details of the X-ray 
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experiments and crystal data are summarized in Table 1. Selected bond lengths and bond angles 

are given in Table 2 and hydrogen-bonds are listed in Table 3. 

 

Results and Discussion 

Synthesis 

 The various chlorocuprates described herein (except for 1B) were prepared from aqueous 

reaction mixtures using 1:2:1 ratios of CuCl2•2H2O:NH2OH•HCl:Pip´ (Pip´ = Pip, MePip or 

Me2Pip) Addition of Pip´ to a hot solution of copper(II) chloride and hydroxylamine 

hydrochloride (the reducing agent) caused the blue-green Cu(II) color to discharge, resulting in 

colorless solutions which crystallized upon cooling. Structural determination of the various 

crystals revealed an interesting variety of polyanions.  

The 1:2:1 CuCl2•2H2O:NH2OH•HCl:Pip´ ratio used could be expected to produce 

(H2Pip´)[CuCl3], as suggested by equation (1), x = 1. However, in no case was the simple 

trichlorocuprate(I) anion realized. Instead, a variety of higher chlorocuprates(I) was found, 

corresponding to a functionally variable Cu:Pip´ ratio. The following product formulas were 

found: (H2Pip)[Cu2Cl4] (1A, Cu:Pip = 2:1), (H2MePip)[Cu3Cl5] (2, Cu:MePip = 3:1), and 

(H2Me2Pip)[Cu4Cl6] (3, Cu:Me2Pip = 4:1). In all cases an excess of copper over Pip´ was noted in 

the product, despite the use of 1:1 reactant ratio. Therefore, an experiment was carried out using 

1:2:2 CuCl2•2H2O:NH2OH•HCl:Pip in order to increase the Pip loading. Interestingly, instead of 

altering the Cu:Pip ratio, the result was formation of a product, 1B, which was isomeric to 1A. 

All of the products described herein are somewhat air-sensitive, decomposing to green Cu(II) 

materials over the course of several weeks when stored in air at reduced temperature. 

        x CuCl2•2H2O  +  2 NH2OH•HCl  +  Pip´  →  (H2Pip´)[CuxClx+2]     (1) 

 

Piperazinium tetrachlorodicuprate(I) chain isomer (1A) 
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Significant structural diversity was observed in the various chlorocuprate(I) polyanions 

prepared in the course of this study. The simplest of these networks was found for 1A, which 

crystallizes in the triclinic space group P–1; a packing diagram is shown in Figure 1. Compound 

1A is formed from a single independent copper atom and two chlorine atoms. The structure 

contains copper-sharing chains of rhomboid Cu2Cl2 dimers. The two Cu…Cu distances across the 

dimer units measure 3.1620(7) and 3.1671(7) Å, i.e. significantly larger than the van der Waals 

sum of two copper atoms (2.8 Å). The (Cu2Cl2)n chains propagate parallel to the crystallographic 

a-axis. Formation of such chains is a very common phenomenon in halocuprate chemistry.1 As is 

the case with all of the networks reported herein, the dications (in this case H2Pip2+) are 

independent of the polyanions, except for the existence of N–H…Cl hydrogen-bonding. The 

H2Pip2+ units are only half crystallographically independent, being centered about an inversion 

center. Hydrogen-bonding N(1)–H…Cl(2) involves all Pip nitrogen atoms and half of the 

chlorides. 

 

Piperazinium tetrachlorodicuprate(I) sheet isomer (1B) 

As described above, the use of additional Pip in the standard reaction did not alter the 

product formula, but instead produced an isomer of 1A. This isomer, 1B, crystallizes in the 

orthorhombic space group Pbcn. The chlorocuprate network in 1B forms an unusual honeycomb 

2D sheet network, see Figure 2. The single independent copper center, Cu1, is linked by bridging 

atom Cl2 to form zigzag chains running parallel to the b-axis. Additionally, Cl1 knits the chains 

together parallel to the a-axis by forming Cu2Cl2 dimers. The resulting sheets contain hexagonal 

Cu6Cl8 units and are oriented parallel to the a,b-plane. The dimer Cu1–Cl1–Cu1′ angle is 

typically acute at 77.53(4)o, however the in-plane Cu1–Cl2–Cu1′ angle is almost twice as large at 

149.03(6)o. The dimers in 1B have slightly more acute angles at Cl than do those in 1A. This 

effect is reflected in a slightly shorter Cu…Cu distance of 2.9645(16) Å. The half-independent 

H2Pip2+ ions lie between the chlorocuprate sheets and are aligned with the centers of the 
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vacancies in the sheets, as is evident in the roughly c-axis projection, Figure 4. Three interactions, 

two between N1 and Cl1 and one between N1 and Cl2, are sufficiently short to suggest hydrogen-

bonding.  

 

N-Methylpiperazinium pentachlorotricuprate(I) (2)  

The unsymmetrical N-methylpiperazinium cation forms a 3:1 Cu:H2MePip complex. The 

product, which is shown in Figures 5 and 6, crystallizes in the space group P–1. The H2MePip2+ 

unit is fully independent, as are the three copper and five chlorine atoms. The 

pentachlorotricuprate(I) units incorporate 3-coordinate Cu1 and Cu2 and 4-coordinate Cu3. The 

latter coordinates an unusual terminal chloride, Cl5. The Cu2 atom shows a slight tendency 

toward 4-coordination. It features three normal length Cu–Cl bonds: Cu2–Cl2 = 2.2510(10), 

Cu2–Cl1′ = 2.2928(10), and Cu2–Cl4′ = 2.3527(10) Å. However, the resulting Cl–Cu–Cl angles 

add up to a total of about 354.5o. In addition, there is a pair of long Cu2…Cl4 interactions (not 

shown in Figures 5 and 6, shown dashed in VIII) measuring 2.9562(11) Å. Weak interactions 

between copper atoms are present. The Cu1…Cu2 distance of 2.7109(8) Å and the Cu1…Cu3 

distance of 2.8751(8) Å are both close to the van der Waals radius sum. The overall structure of 

the chlorocuprate network is a novel ribbon structure, VIII, propagating parallel to the 

crystallographic a-axis and which is closely related to known halocuprate networks IV, V, and 

VI. The methyl-bearing nitrogen atom, N1, shows a single hydrogen-bonding interaction to Cl5. 

The NH2 nitrogen atom, N2, shows potential hydrogen-bonding interactions to Cl3, Cl4 and Cl5. 

However, as was the case for 1B, only two of these interactions are formally allowable, given the 

presence of only two hydrogen atoms at this site. 
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N,N´-Dimethylpiperazinium hexachlorotetracuprate(I) (3)  

The dimethylpiperazinium chlorocuprate network crystallizes in monoclinic space group C2/c. 

The chlorocuprate anions (see Figures 7 and 8) consist of tetrahedral adamantane-like Cu4Cl6
2– 

units that weakly link together to form ribbons running parallel to the crystallographic c-axis. 

Two independent copper atoms are present: 3-coordinate Cu1 and roughly 3-coordinate Cu2. The 

latter shows three regular Cu–Cl bonds: Cu2–Cl3 = 2.2645(5), Cu2–Cl1′ = 2.3052(5), and Cu2–

Cl4 = 2.3242(5). However, the Cl–Cu–Cl angles total to only about 355.8o. An additional pair of 

long Cu2…Cl3 interactions measuring 2.7623(6) Å link the Cu4Cl6
2– units together to form a 

ribbon running parallel to the c-axis (see Figure 8). An even longer pair of Cu1…Cl1 interactions 

measuring 3.0568(5) Å (slightly under the van der Waals sum of 3.15 Å) further links the ribbons 

in a direction between the a- and b-axes to form a 2D sheet network (see IX). All of the chloride 

atoms form simple bridges between copper centers, except Cl3, which (taking into account the 

long Cu2…Cl3 bond) is triply bridging and in T-shaped geometry. All Cu–Cl–Cu bond angles 

within the polyhedra are in the range of 77.152(18) to 89.10(3)o. The Cu4X6
2– unit is widely 

recognized in Cu(I) halide networks,8a,13 but linking of these units into ribbons has only a single 

precident.6c The two hydrogen-bonding interactions in 3 involve the proton attached to N1 and 

the chlorocuprate Cl1 and Cl3 atoms. 

 

Conclusions 
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 Four new piperazinium salt structures were added the known catalog of halocuprate 

coordination modes. Network 1B is a very rare example of a chlorocuprate forming a 2D sheet 

structure and networks 2 and 3 are relatively unusual examples of chlorocuprate ribbons formed 

from linking of polyhedra. 

 

Supplementary Material:  Tables of atomic coordinates for each structure are avialable as 

supplementary material. CCDC 679163–679166 contain the crystallographic data for this paper. 

These data can be obtained free of charge by e-mailing data_request@ccdc.cam.ac.uk or by 

contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ 

UK; Fax +44(0)1223-336033; www.ccdc.cam.ac.uk/data_request/cif. 
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Table 1.  Crystal and Structure Refinement Data.a 

 1A  1B 2 

CCDC deposit no. 679163 679164 679165 

color and habit colorless needle colorless blade colorless blade 

size, mm 0.42  0.08  0.07 0.30  0.10  0.02 0.33  0.11  0.03 

formula C2H6Cl2Cu1N1 C4H12Cl4Cu2N2 C5H14Cl5Cu3N2 

formula weight 178.52 178.52 470.05 

space group P–1 (#2) Pbcn (#60) P–1 (#2) 

a, Å 6.3141(2)  9.9442(6)  8.0815(7)  

b, Å 6.8248(2) 8.0622(5) 9.6584(9) 

c, Å 6.9067(2) 13.1301(7) 9.7900(8) 

, deg 90.707(2) 90 70.231(4) 

, deg 110.748(2) 90 77.180(4) 

, deg 110.799(2) 90 70.587(4) 

volume, Å3 256.918(13) 1052.67(11) 673.05(10) 

Z 2 8 2 

calc, g cm−3 2.308 2.253 2.319 

F000 176 704 460 

(Cu K), mm−1 14.251 13.913 14.387 

radiation CuK  

( = 1.54178 Å) 

CuK  

( = 1.54178 Å) 

CuK  

( = 1.54178 Å) 

temperature, K 200 200 100 

residuals:a R; Rw
 0.0282; 0.0715 0.0394; 0.1145 0.0383; 0.1043 

goodness of fit 1.089 1.047 1.059 
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aR = R1 = ||Fo| − |Fc||/ |Fo| for observed data only.  Rw = wR2 = {[w(Fo
2 – Fc

2)2]/[w(Fo
2)2]}1/2 

for all data.
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Table 1. (cont’d) 

 3  

CCDC deposit no. 679166 

color and habit colorless prism 

size, mm 0.18  0.07  0.06 

formula C3H8Cl3Cu2N 

formula weight 291.53 

space group C2/c (#15) 

a, Å 17.4026(6)  

b, Å 10.5295(4) 

c, Å 11.7501(8) 

, deg 90 

, deg 131.5490(10) 

, deg 90 

volume, Å3 1611.35(14) 

Z 8 

calc, g cm−3 2.403 

F000 1136 

(Cu K), mm−1 14.948 

radiation CuK  

( = 1.54178 Å) 

temperature, K 100 

residuals:a R; Rw
 0.0191; 0.0455 

goodness of fit 1.105 
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aR = R1 = ||Fo| − |Fc||/ |Fo| for observed data only.  Rw = wR2 = {[w(Fo
2 – Fc

2)2]/[w(Fo
2)2]}1/2 

for all data. 
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Table 2. Selected Bond Distances (Å) and Angles (o). 

 1A 1B 2 3 

Cu–Cl 2.3798(7), 

2.3923(7), 

2.3466(7), 

2.4064(7) 

2.3234(12), 

2.4103(13), 

2.3797(13), 

2.4052(13) 

2.2265(10), 2.2363(10), 

2.2510(10), 2.2929(10), 

2.3255(9), 2.3392(10), 

2.3528(10), 2.3704(10), 

2.3797(10), 2.4195(10), 

2.9562(11)a 

2.2577(6), 2.2645(5), 

2.2840(5), 2.3052(5), 

2.3242(5), 2.3262(5), 

2.7623(6)a, 3.0568(5)a 

Cu…Cu 3.1620(7), 

3.1671(7) 

2.9645(16) 2.7109(8), 2.8751(8) 2.8616(4), 2.8759(6), 

2.8794(4) 

Cl–Cu–Cl 96.45(2), 

96.99(2), 

108.97(3), 

116.02(3), 

119.47(3), 

119.78(3) 

101.98(4), 

107.30(5), 

107.63(5), 

109.16(5), 

114.43(5), 

115.25(4) 

85.94(3)a, 97.58(3), 99.47(4)a, 

105.70(4), 106.99(3), 107.44(4), 

107.96(4), 108.25(3), 110.72(3)a, 

110.92(4), 111.20(4), 112.02(4), 

124.04(4), 136.73(4),  137.84(4) 

88.057(18)a, 96.549(18)a, 

103.228(18)a, 

107.518(16), 

115.401(19), 116.21(2), 

117.064(19), 

126.187(17), 132.88(2) 

Cu–Cl–Cu 83.01(2),  

83.55(2) 

77.53(4), 

149.03(6) 

68.97(3)a, 69.28(3)a, 74.52(3), 

78.11(3), 82.31(3), 104.53(4), 

111.56(4), 123.52(4) 

76.771(17)a, 77.152(18), 

77.677(18), 79.12(3),  

89.10(3), 151.75(2)a 

aValues associated with long Cu…Cl interactions.  
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Table 3.  Hydrogen-bond Distances (Å) and Angles (o). 

Network D–H…A D–H dist. H…A dist. D…A dist. D–H…A angle 

1A N1–H2...Cl1a 

N1–H1...Cl2b                         

N1–H1...Cl1b                         

N1–H1...Cl2c                         

0.88(3) 

0.86(5) 

0.86(5) 

0.86(5) 

2.48(3) 

2.67(4) 

2.78(4) 

2.87(4) 

3.307(2) 

3.306(2) 

3.361(2) 

3.242(2) 

158(3) 

132(3) 

126(3) 

108(3) 

1B N1–H2...Cl2d                         

N1–H2...Cl1e 

N1–H2...Cl1d 

N1–H1...Cl2f 

0.76(6) 

0.76(6) 

0.76(6) 

0.89(6) 

2.98(5) 

2.71(5) 

2.62(5) 

2.33(6) 

3.420(4) 

3.177(4) 

3.171(4) 

3.209(4) 

120(4) 

121(4) 

131(4) 

170(5) 

2 N1–H1...Cl5g                                

N2–H2C...Cl4h                              

N2–H2D...Cl5                                

N2–H2D...Cl3h                              

N2–H2D...Cl3                                

0.93 

0.92 

0.92 

0.92 

0.92 

2.12 

2.31 

2.38 

2.81 

2.85 

3.045(3) 

3.200(3) 

3.132(3) 

3.258(3) 

3.381(3) 

172.7 

163.6 

138.3 

111.1 

118.3 

3 N1–H1...Cl1i                             

N1–H1...Cl3j                             

0.93 

0.93 

2.64 

2.64 

3.2848(17) 

3.3094(16) 

127.0 

129.2 

 

Symmetry transformations used to generate equivalent atoms: a–x+1,–y+1,–z+1; bx,y+1,z;  

c–x+1,–y+1,–z+2; d–x+1,–y+1,–z+1; ex+1,y–1,z; f–x+3/2,y–1/2,z; g–x+1,–y+2,–z+1;  

h–x+1,–y+1,–z+1; i–x+1/2,y–1/2,–z+1/2; j–x+1/2,–y+1/2–z.
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 Captions for Figures. 

 

Figure 1. Thermal ellipsoid (50%) drawing of 1A.  

Figure 2. Network and packing diagram for 1A. Hydrogen atoms omitted for clarity. 

Figure 3. Thermal ellipsoid (50%) drawing of 1B. 

Figure 4. Network and packing diagram for 1B. Hydrogen atoms omitted for clarity. 

Figure 5. Thermal ellipsoid (50%) drawing of 2. 

Figure 6. Network and packing diagram for 2. Hydrogen atoms omitted for clarity. 

Figure 7. Thermal ellipsoid (50%) drawing of 3. 

Figure 8. Network and packing diagram for 3. Hydrogen atoms omitted for clarity. 
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Figure 1. Thermal ellipsoid (50%) drawing of 1A.  

 

Figure 2. Network and packing diagram for 1A. Hydrogen atoms omitted for clarity. 
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Figure 3. Thermal ellipsoid (50%) drawing of 1B. 

 

Figure 4. Network and packing diagram for 1B. Hydrogen atoms omitted for clarity. 
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Figure 5. Thermal ellipsoid (50%) drawing of 2. 

 

Figure 6. Network and packing diagram for 2. Hydrogen atoms omitted for clarity. 
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Figure 7. Thermal ellipsoid (50%) drawing of 3. 

 

Figure 8. Network and packing diagram for 3. Hydrogen atoms omitted for clarity. 
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