101 research outputs found

    Cytoprotective effect of lithium against spontaneous and induced apoptosis of lymphoid cell line MOLT-4.

    Get PDF
    Lithium (Li) is still useful in the treatment of bipolar disorder. Cellular mechanisms of Li action are not fully understood and include some cytoprotective properties. Data concerning Li effect on the apoptotic mechanisms in cells other than neurons are fragmentary and contradictory. We have investigated anti-apoptotic activity of Li in a lymphoid derived MOLT-4 cell line. Spontaneous and camptothecin-induced apoptosis was analyzed in cells treated with 0-20 mM Li carbonate. Early apoptosis was identified as significant mitochondrial depolarization (JC-1 staining). Later stages of apoptosis were estimated with annexin V binding and by the proportion of cells containing sub-G1 amounts of DNA (PI staining). We have observed a biphasic effect of Li on the proportion of spontaneously apoptotic cells;namely, low (therapeutic) concentrations of Li had a significant effect stabilizing the mitochondrial membrane polarization, while 10 and 20mM Li increased apoptosis. The latter could be seen both as mitochondrial depolarization as well as an increased proportion of sub-G1 cells, accompanied by reduced proportion of S phase cells. Li at concentrations above 2 mM had a significant, dose-dependent, anti-apoptotic effect on the cells undergoing camptothecin induced apoptosis. In conclusion, demonstrated cytoprotective effect of Li is at least partially related to stabilization of mitochondrial membrane potential and to the reduction of DNA damaging effects in proliferating cells; both may form part of the mechanism through which Li is useful in therapy of bipolar disorder, but may have more general consequences

    Cytoprotective effect of lithium against spontaneous and induced apoptosis of lymphoid cell line MOLT-4.

    Get PDF
    Lithium (Li) is still useful in the treatment of bipolar disorder. Cellular mechanisms of Li action are not fully understood and include some cytoprotective properties. Data concerning Li effect on the apoptotic mechanisms in cells other than neurons are fragmentary and contradictory. We have investigated anti-apoptotic activity of Li in a lymphoid derived MOLT-4 cell line. Spontaneous and camptothecin-induced apoptosis was analyzed in cells treated with 0-20 mM Li carbonate. Early apoptosis was identified as significant mitochondrial depolarization (JC-1 staining). Later stages of apoptosis were estimated with annexin V binding and by the proportion of cells containing sub-G1 amounts of DNA (PI staining). We have observed a biphasic effect of Li on the proportion of spontaneously apoptotic cells;namely, low (therapeutic) concentrations of Li had a significant effect stabilizing the mitochondrial membrane polarization, while 10 and 20mM Li increased apoptosis. The latter could be seen both as mitochondrial depolarization as well as an increased proportion of sub-G1 cells, accompanied by reduced proportion of S phase cells. Li at concentrations above 2 mM had a significant, dose-dependent, anti-apoptotic effect on the cells undergoing camptothecin induced apoptosis. In conclusion, demonstrated cytoprotective effect of Li is at least partially related to stabilization of mitochondrial membrane potential and to the reduction of DNA damaging effects in proliferating cells; both may form part of the mechanism through which Li is useful in therapy of bipolar disorder, but may have more general consequences

    Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

    Get PDF
    © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.The eruption of the Icelandic volcano Eyjafjallaj ökull in April-May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5-15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.Peer reviewe

    Patients With Celiac Disease Have an Increased Risk for Pancreatitis

    Get PDF
    Background & Aims Patients with celiac disease have been reported to be at increased risk for pancreatitis and pancreatic insufficiency, but the risk might have been overestimated because of patient selection and limited numbers of patients for analysis. Furthermore, no distinction has been made between patients with gallstone-related and non–gallstone-related pancreatitis. We performed a nationwide study to determine the risk for any pancreatitis or subtype of pancreatitis among patients with biopsy-verified celiac disease. Methods We analyzed data from patients in Sweden with celiac disease (n = 28,908) who were identified on the basis of small intestinal biopsy records from 28 pathology departments (those with villous atrophy, Marsh 3). Biopsies were performed from 1969 to 2008, and biopsy report data were collected from 2006 to 2008. Patients with pancreatitis were identified on the basis of diagnostic codes in the Swedish Patient Register and records of pancreatic enzyme use in the Swedish Prescribed Drug Register. Data were matched with those from 143,746 individuals in the general population; Cox regression was used to estimate hazard ratios (HRs) for pancreatitis. Results We identified 406 patients with celiac disease who were later diagnosed with pancreatitis (and 143 with expected pancreatitis) (HR, 2.85; 95% confidence interval [CI], 2.53–3.21). The absolute risk of any pancreatitis among patients with celiac disease was 126/100,000 person-years, with an excess risk of 81/100,000 person-years. The HR for gallstone-related acute pancreatitis was 1.59 (95% CI, 1.06–2.40), for non–gallstone-related acute pancreatitis HR was 1.86 (95% CI, 1.52–2.26), for chronic pancreatitis HR was 3.33 (95% CI, 2.33–4.76), and for supplementation with pancreatic enzymes HR was 5.34 (95% CI, 2.99–9.53). The risk of any pancreatitis within 5 years of diagnosis was 2.76 (95% CI, 2.36–3.22). Conclusions Based on an analysis of medical records from Sweden, patients with celiac disease have an almost 3-fold increase in risk of developing pancreatitis, compared with the general population

    Observation of ozone concentration during the solar eclipse

    Get PDF
    Abstract We report the results of measurements of ozone concentrations during the solar eclipse of 11 Ćœ . August 1999. The experiment was performed in Warsaw Poland and its surroundings. The temporal evolution of ozone concentration was measured using the differential absorption lidar Ćœ . DIAL and it was compared with results obtained by several monitoring stations measuring with other methods. In almost all cases, a drop in the ozone concentration was observed during the eclipse. Experimental data was compared with calculations done using a simple model based on NO -O chemical kinetics. q 2001 Elsevier Science B.V. All rights reserved

    A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals

    Get PDF
    Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research Infra-Structure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAM-ABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1-6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to -20 mu g m(-3) at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies

    Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland

    Get PDF
    The 39-day long eruption at the summit of Eyjafjallajökull volcano in April–May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·1011 kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km3). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km3) transported by 3–10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 ”m). At least 7·1010 kg (70 Tg) was very fine ash (<28 ”m), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km2 in Europe and the North Atlantic. Of order 1010 kg (2%) are considered to have been transported longer than 600–700 km with <108 kg (<0.02%) reaching mainland Europe

    Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET

    Get PDF
    The financial support by the European Union's Horizon 2020 research and innovation programme (ACTRIS-2, grant agreement no. 654109) is gratefully acknowledged. The background of LIRIC algorithm and software was developed under the ACTRIS Research Infrastructure project, grant agreement no. 262254, within the European Union Seventh Framework Programme, which financial support is gratefully acknowledged.r I. Binietoglou received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under the grant agreement no. 289923 - ITARS.This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data. The algorithm starts with the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLINET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.European Union (EU) 654109ACTRIS Research Infrastructure project within the European Union 262254European Union (EU) 289923 - ITAR

    The unprecedented 2017-2018 stratospheric smoke event : Decay phase and aerosol properties observed with the EARLINET

    Get PDF
    © Author(s) 2019. This open access work is distributed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm-pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22-23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21-23 August 2017 to 0.005-0.03 until 5-10 September and was mainly 0.003-0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001-0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50-200 Mm-1 until the beginning of September and on the order of 1 Mm-1 (0.5- 5 Mm-1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05-0.5 Όg m-3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50-500 L-1 until the first days in September and afterwards 5-50 L-1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of -55 ?C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15-0.25 (August-September) to values of 0.05-0.10 (October-November) and < 0.05 (December-January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32-35? N, that ascended from heights of about 18-19 to 22-23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.Peer reviewe
    • 

    corecore