118 research outputs found

    Topological invariants of plane curve singularities: Polar quotients and Lojasiewicz gradient exponents

    Get PDF
    In this paper, we study polar quotients and Łojasiewicz exponents of plane curve singularities, which are not necessarily reduced. We first show that, for complex plane curve singularities, the set of polar quotients is a topological invariant. We next prove that the Łojasiewicz gradient exponent can be computed in terms of the polar quotients, and so it is also a topological invariant. For real plane curve singularities, we also give a formula computing the Łojasiewicz gradient exponent via real polar branches. As an application, we give effective estimates of the Łojasiewicz exponents in the gradient and classical inequalities of polynomials in two (real or complex) variables

    Neutrinos in 5D SO(10) Unification

    Full text link
    We study neutrino physics in a 5D supersymmetric SO(10) GUT. We analyze several different choices for realizing the See-Saw mechanism. We find that the "natural" scale for the Majorana mass of right-handed neutrinos depends critically on whether the right-handed neutrinos are located in the bulk or localized on a brane. In the former case, the effective Majorana mass is "naturally" of order the compactification scale, about 10^{14} GeV. Note, this is the value necessary for obtaining a light tau neutrino mass approximately 10^{-2} eV which, within the context of hierarchical neutrino masses, is the right order of magnitude to explain atmospheric neutrino oscillations. On the other-hand when the right-handed neutrino is localized on the brane, the effective Majorana mass is typically larger than the compactification scale. Nevertheless with small parameters of order 1/10 - 1/30, an effective Majorana mass of order 10^{14} GeV can be accommodated. We also discuss the constraints on model building resulting from the different scenarios for locating the right-handed neutrinos.Comment: 24 page

    Study on N-NH4+ removal from underground water by MBBR case study in Bach Khoa Ward, Hanoi, Vietnam

    Get PDF
    Moving bed biofilm reactor (MBBR) using porous carrier plastic material, Polyurethane (DHY-1) which has high porosity 92% -96%, has been researched and applied in many water treatment systems. The advantage of the material is that it has high surface area of about 6,000-12,000m2/m3 thereby increasing the density of biomass. In this research, they were tried to treat ammonium nitrogen (N-NH4+) in the ground water. It was found that the treatment efficiency was more than 90% with N-NH4+ concentration of 10-12mg/l. Different densities of carrier materials as well as different influent flow rates have significant impacts on the removal efficiency. The study showed that treatment capacity decreased with high influent flow rate while increased with high density of carrier materials

    On the inertia of heat

    Full text link
    Does heat have inertia? This question is at the core of a long-standing controversy on Eckart's dissipative relativistic hydrodynamics. Here I show that the troublesome inertial term in Eckart's heat flux arises only if one insists on defining thermal diffusivity as a spacetime constant. I argue that this is the most natural definition, and that all confusion disappears if one considers instead the space-dependent comoving diffusivity, in line with the fact that, in the presence of gravity, space is an inhomogeneous medium.Comment: 3 page

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF

    Software performance of the ATLAS track reconstruction for LHC run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)
    corecore