198 research outputs found

    Selection index estimation from partial multivariate normal data

    Get PDF
    Selection index estimation from partial multivariate normal dat

    Promotion of Renewable Energy Sources in the European Union

    Full text link
    One of the important goals of European energy policy is to increase the share of renewable energy resources in the energy supply. The instruments used in the member states are not fully compatible with the rules of the European internal market. In a theoretical section, this paper analyses possible different instruments for promoting renewable energy. Some countries use feed in tariffs - using fixed prices to increase incentives for producers to invest into renewable energy, other countries use quantity-based systems like quotas that lead to a premium above the market price. In an institutional analysis we show that on the basis of effectiveness and efficiency considerations for the European Union, in the long-term quantity oriented systems of promotion are preferable if combined with elements of a capacity market. The main reason for this conclusion is that price-based systems cannot give enough incentives for backup capacities necessary to cope with intermittent production of renewable sources. In addition price-based systems violate the basic rules of the open internal European market because feed in tariffs are a considerable barrier for trade of renewable energy products

    A Hierarchical Method for Removal of Baseline Drift from Biomedical Signals: Application in ECG Analysis

    Get PDF
    Noise can compromise the extraction of some fundamental and important features from biomedical signals and hence prohibit accurate analysis of these signals. Baseline wander in electrocardiogram (ECG) signals is one such example, which can be caused by factors such as respiration, variations in electrode impedance, and excessive body movements. Unless baseline wander is effectively removed, the accuracy of any feature extracted from the ECG, such as timing and duration of the ST-segment, is compromised. This paper approaches this filtering task from a novel standpoint by assuming that the ECG baseline wander comes from an independent and unknown source. The technique utilizes a hierarchical method including a blind source separation (BSS) step, in particular independent component analysis, to eliminate the effect of the baseline wander. We examine the specifics of the components causing the baseline wander and the factors that affect the separation process. Experimental results reveal the superiority of the proposed algorithm in removing the baseline wander

    Two-stroke scooters are a dominant source of air pollution in many cities.

    Get PDF
    Fossil fuel-powered vehicles emit significant particulate matter, for example, black carbon and primary organic aerosol, and produce secondary organic aerosol. Here we quantify secondary organic aerosol production from two-stroke scooters. Cars and trucks, particularly diesel vehicles, are thought to be the main vehicular pollution sources. This needs re-thinking, as we show that elevated particulate matter levels can be a consequence of 'asymmetric pollution' from two-stroke scooters, vehicles that constitute a small fraction of the fleet, but can dominate urban vehicular pollution through organic aerosol and aromatic emission factors up to thousands of times higher than from other vehicle classes. Further, we demonstrate that oxidation processes producing secondary organic aerosol from vehicle exhaust also form potentially toxic 'reactive oxygen species'.This work was supported by the Swiss Federal Office for the Environment (FOEN), the Federal Roads Office (FEDRO), the Swiss National Science Foundation (Ambizione PZ00P2_131673, SAPMAV 200021_13016), the EU commission (FP7, COFUND: PSI-Fellow, grant agreement n.° 290605), the UK Natural Environment Research Council (NERC), the French Environment and Energy Management Agency (ADEME, Grant number 1162C00O2) and the Velux Foundation.This is the accepted manuscript version. The final version is available from http://www.nature.com/ncomms/2014/140513/ncomms4749/full/ncomms4749.html

    An auto TCD probe design and visualization

    Get PDF
    Transcranial Doppler ultrasound (TCD) is a non-invasive ultrasound method used to examine blood circulation within the brain. During TCD, ultrasound waves are transmitted through the tissues including skull. These sound waves reflect off blood cells moving within the blood vessels, allowing the radiologist to interpret their speed and direction. In this paper, an auto TCD probe is developed to control the 2D deflection angles of the probe. The techniques of Magnetic Resonance Angiography (MRA) and Magnetic Resource Imagine (MRI) have been used to build the 3D human head model and generate the structure of cerebral arteries. The K-Nearest Neighbors (KNN) algorithm as a non-parametric method has been used for signal classification and regression of corresponding arteries . Finally, a global search and local search algorithms are used to locate the ultrasound focal zone and obtain a stronger signal efficient and more accurate result

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A

    Ultrasound enhanced prehospital thrombolysis using microbubbles infusion in patients with acute ST elevation myocardial infarction: Rationale and design of the Sonolysis study

    Get PDF
    Contains fulltext : 70525.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND -: Experimental studies have shown that ultrasound contrast agents enhance the effectiveness of thrombolytic agents in the presence of ultrasound in vitro and in vivo. Recently, we have launched a clinical pilot study, called "Sonolysis", to study this effect in patients with ST-elevation myocardial infarction based on proximal lesions of the infarct-related artery. METHODS/DESIGN -: In our multicenter, randomized, placebo controlled clinical trial we will include patients between 18 and 80 years of age with their first ST-elevation myocardial infarction based on a proximal lesion of the infarct-related artery. After receiving a single bolus alteplase 50 mg IV (Actilyse(R) Boehringer Ingelheim GmbH), a loading dose of aspirin 500 mg, and heparin 5000 IU in the ambulance according to the prehospital thrombolysis protocol, patients, following oral informed consent, are randomized to undergo 15 minutes of pulsatile ultrasound with intravenous administration of ultrasound contrast agent or placebo without ultrasound. Afterwards coronary angiography and, if indicated, percutaneous coronary intervention will take place. A total of 60 patients will be enrolled in approximately 1 year.The primary endpoints are based on the coronary angiogram and consist of TIMI flow, corrected TIMI frame count, and myocardial blush grade. Follow-up includes 12-lead ECG, 2D-echocardiography, cardiac MRI, and enzyme markers to obtain our secondary endpoints, including the infarct size, wall motion abnormalities, and the global left ventricular function. DISCUSSION -: The Sonolysis study is the first multicenter, randomized, placebo controlled clinical trial investigating the therapeutic application of ultrasound and microbubbles in acute ST-elevation myocardial infarction patients. A positive finding may stimulate further research and technical innovations to implement the treatment in the ambulance and maybe obtain even more patency at an earlier stage. TRIAL REGISTRATION -: Trialregister NTR161

    Introduction of a new model for time-continuous and non-contact investigations of in-vitro thrombolysis under physiological flow conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thrombolysis is a dynamic and time-dependent process influenced by the haemodynamic conditions. Currently there is no model that allows for time-continuous, non-contact measurements under physiological flow conditions. The aim of this work was to introduce such a model.</p> <p>Methods</p> <p>The model is based on a computer-controlled pump providing variable constant or pulsatile flows in a tube system filled with blood substitute. Clots can be fixed in a custom-built clot carrier within the tube system. The pressure decline at the clot carrier is measured as a novel way to measure lysis of the clot. With different experiments the hydrodynamic properties and reliability of the model were analyzed. Finally, the lysis rate of clots generated from human platelet rich plasma (PRP) was measured during a one hour combined application of diagnostic ultrasound (2 MHz, 0.179 W/cm<sup>2</sup>) and a thrombolytic agent (rt-PA) as it is commonly used for clinical sonothrombolysis treatments.</p> <p>Results</p> <p>All hydrodynamic parameters can be adjusted and measured with high accuracy. First experiments with sonothrombolysis demonstrated the feasibility of the model despite low lysis rates.</p> <p>Conclusions</p> <p>The model allows to adjust accurately all hydrodynamic parameters affecting thrombolysis under physiological flow conditions and for non-contact, time-continuous measurements. Low lysis rates of first sonothrombolysis experiments are primarily attributable to the high stability of the used PRP-clots.</p
    • …
    corecore