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SUMMARY 

A technique is applied to the estimation of the selection index, when incomplete 
multivariate normal data records are available. The procedure utilizes all data available, 
both full and partial vectors, and represents an improvement in precision of the estimator 
over that found by using the full data vectors only. Estimates of phenotypic means and 
variance-covariance matrix also result from the procedure. 

Individuals with partial data records are indexed by an extension of the technique, 
and this index is contrasted to that proposed by Henderson. The results of computer 
simulations are tabulated. 

1. INTRODUCTION 

The purpose of this research is to estimate the selection index from 
multivariate normal data which may have some observation vectors with 
missing elements. The selection index is a well-lmown procedure for grading 
individuals in large groups. For a thorough review of relevant work on this 
topic see Williams [1962]. Briefly we may note that Fairfield Smith [I9361 
originally developed the selection index in order to discriminate in selection 
programs among varieties of plants. Hazel [I9431 initially applied the pro- 
cedure to animal breeding programs. An extension of the technique was 
developed by Iiempthorne and Nordsliog [I9591 in which the breeder could 
hold genetic values constant for some traits in the index as selection pro- 
gressed. Henderson [I9631 delineated the selection index procedure in the 
case where different information on individuals to be indexed was avaiIable 
(the phenotypic means assumed known), and indicated an alternative method 
for dealing with unequal information under these conditions. WiIlian~s [1962] 
devised a method for evaluating and comparing the four different indices he 
defined, giving particular attention to the estimation of the phenotypic and 
genotypic variance-covariance matrices in the commonly used estimated 
index. 

Defining 
I i  = blxi , (1) 

where I, is a composite index value associated with the jth member of the 
population, b is an  n X 1 vector of unknown coefficients, and xi is an n X 1 
vector of phenotypic values (observations) on the jth member of the popula- 
tion, Smith [I9361 shows that 

b = P- 'G~.  ( 2 )  

625 
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In this context I? is the n X 7% covariance matrix of phenotypic values, G 
is the n X n matrix of genotypic values, and cu is the n X 1 vector of economic 
weights associated with the n traits. 

The problem of estimating b has been attacked by many authors notably 
Henderson [1963]. This study estimates b using all infoPnlation available 
(i.e. both full and incomplete data records) by estimating the elements of 
the matrix P, assuming both G and cu known. The method of attack mill 
be to apply and extend the technique of Hocldng and Smith [1968]. This 
procedure was developed to estimate the parameters of a multivariate normal 
distribution in the presence of partial data, and the technique has been shown 
to lead to estimates which are consistent and asymptotically efficient. The 
i~lethod can be summarized as follows: 

(1) Divide the data into groups according to which phenotypic values 
are missing. 

(2) Within each group find the best estimate of all possible parameters. 
(3)  Sequentially adjoin, optimally, the information in each partial data 

group to the full data group. 
I n  sunlmary the above techniclue is applied to the selection index problem; 

the resulting estimates of b, P, and the vector, v, of the phenotypic means are 
considerably 'better' than those using only the full data vectors. Extended 
Monte Carlo simulations are used to support this claim. I n  addition, the 
procedure is used in indexing individuals with partial data records, and con- 
trasts with the method of Henderson [I9631 are made. 

2. ESTIMATION PROCEDURE 

Assuming the xi vectors are distributed as multivariate normal, that is, 
xi N N,(v, P), we mill now give a general procedure ~vhich utilizes all infor- 
mation arising from both complete and incomplete xi vectors. As examples of 
the procedure consider two different cases: (1)  some of the xi vectors contain 
conlplete information on all n traits and (2) none of the xi vectors contain 
complete information. In  both cases, the improvenlent in the estimation of b 
is induced by improving the estimates of pii , the elements of the phenotypic 
covariance matrix, P. Tllus, in the process of estimating b, improved esti- 
mates of the phenotypic variances and covariances follow directly. I n  addi- 
tion, improved estimates of the phenotypic vector of means, v, may be 
computed by the application of the procedure used to estimate the pi i  . 

The procedure used to estimate p,,. optinlally was developed by Hoclring 
and Snlith [I9681 and will be briefly described by the examples below. The 
procedure is sequential, not iterative. These examples are given only to 
illustrate the technique; the general formulation is given in the Appendix. 

2.1. Case 1-Sonze complete xi-vectors 

We consider two examples, both involving 3 traits, s, , s, , and x, . I n  
Example 1, assume that we have n, complete vectors, n, vectors with infor- 
mation on and x, , and n, vectors with information only on s1 . In  Example 
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2, n, and n2 are unchanged but we have n,, vectors with information on x, 
and 2, . Schematically, we have: 

Example 1 Example 2 

Number of Number of 
observations observations 

The procedure will be described only for estimates of the phenotypic 
means, p1 , p2 , and p, in Example 1. Generalizations to the pi, estimates 
follo~v the same pattern. 

The first step is to adjoin to the n1 vectors of x, , x, , and x3 the n2 vectors 
on xl and 2, as follows: 

Traits 

where - indicates the improved estimate and i f i i  denotes the estimate of pi 
obtained from the ni data only. 

Notice that if ali and azi are constants, 

n, n, n, 

In  order to find the coefficients ali and azi , the variance of ,pi is minimized 
with respect to them. The results are: 

i = 1, a,, = -n,/(n, + n,) aZi = 0; (5)  

Notice that ,p, and ,pz are the simple weighted means as one would expect. 
The n, xl-vectors are incorporated as follows: 

As before, a-rises from minimizing the variance of ,Pi . The general 
procedure to estinzate the pi or p,, is: 

(i) For each type of vector 72,. , compute the appropriate statistics as 
if n, were a complete sample. 

(ii) Adjoin sequentially to the complete vector 72, the n, , forming the 
linear combinations as illustrated above. In  each step, the adjoined differences 
must have expectation zero, given that al i  , a,, , a? are constants. 
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In  general, the coefficients of the differences in the linear combinations 
are functions of the parameters (e.g. a,; and a,, in Example 1 for i = 3). 
Consequently, the parameters in these coefficients must be estimated. Hock- 
ing and Smith [I9651 have shown that in the case of nested data the esti- 
mators, pi and pi, , and the estimators, f i ,  and pi ,  , are invariant to which- 
ever estimates of the parameters are selected in the coefficients; i.e. Pi and 
ljii , pi and pii , or Pi and pi,. . I n  (7), for example, the *, -, and " estimators 
could be used without altering the estimate given by (4). I n  general, resulting 
estimators are consistent and for small sample sizes, the bias appears to be 
slight (see Hoclring and Smith [I9651 p. 171). 

2.2. Case 2 - 4 0  complete xi-vectors 

We consider only one example of this type: n, vectors with information 
on x ,  and Z2 , and n, vectors with information on x1 and 2, . Schematically, 
we have: 

Example 3 

Number of 
observations 

For this procedure, an independent estimate of p13 is required since the 
data in the above configuration will not supply an estimate of this parameter. 
The procedure for deriving the estimators for Case 2 problems is indicated 
via Example 5 in the Appendix. 

It is interesting to note, though somewhat difficult to prove in general, 
that, in both Cases 1 and 2, as the data sets ni are adjoined sequentially to 
n, , the estimates of the b, for the current sequence are the same as the Si 
in the previous sequence for all those traits which are not conlmon to ni and 

W W 

ni-, . That is, in Example 1, 6,  = 6,  = ba and 8, = ba , and in Example 2, 
W 

6 ,  = bl and 6,  = 8, . 

Traits 

x1 
2 2  

2 3  

3. MONTE CARLO RESULTS AND THE INCOMPLETE 
INFORMATION CASE 

n, n2 

X X 
X 

X 

3.1. Demonstration of improved index estimates 

Hocking and Smith [I9651 have shown analytically and by Monte Carlo 
studies that the estimates of the variances and covariances arising from the 
procedures described above using the incomplete data vectors arc sub- 
stantially more precise than the estimates based on the complete data only. 
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It will be shown that the same can be said about the estimation of b and, 
hence, the selection index I. 

I n  the following examples, the means were assumed to be zero without loss 
of generality. I n  each example, 100 Monte Carlo trials were executed and the 
average estimate as well as the mean square error of the estimates were 
computed. Further, the generalized variance, I~ (6 ) l ,  of the estimates was 
determined, ~ ( b )  being the sample covariance matrix of the 6-vector. For 
each estimate, tho Cram&-Rao minimum variance bound (Smith and 
Hocking [1968]) was computed to give comparison with the mean square error. 

I n  both examples, a' = (10, 10, 10); that is, equal economic weights were 
chosen for each trait. Experience with a variety of economic weight vectors cu 
has shown that the efficiency of the estimate of b is dependent to some extent 
on the relative magnitude of the weights. That is, if the heaviest weight is 
given to the trait that has the least number of observations on it, the estimate 
is considerably more efficient than the complete data vector only estimate. 
However, a heavy weight on a trait that is observed in most, if not all, data 
vectors produces an estimate that is only slightly more efficient than the 
complete data estimate. 

I n  Example 1, n, = 100 vectors were taken from N,(O, 3P), nZ = 50 
vectors from N,(O, zP), and n3 = 25 vectors from N,(O, lP), where 

The results are given in Table 1, where data group 1 represents the complete 
data vector set. Notice that the bias, as well as the mean square error of 
the estimates, is measurably decreased as more information (n, , then n,) is 
adjoined to n, , As remarked previously, if no further information is adjoined 
from one data group to the next on a specific trait, the b-coefficient associated 
with that trait, as well as its mean square error, remains unchanged. For 
instance, the average value of b, remains constant with the addition to n, of 
n, and then n, , since the n, and n, data vectors contain no information on x, . 

In  Example 2, n, = 100 veotors were taken from N3(0, 3P), n2 = 50 
vectors from Nz(O, aP), and n3 = 50 vectors from Nz(O, 4P), where 

The results are given in Table 2. As in ExampIe 1, the improvement in the 
estimation of b is apparent as the n, and ne information is adjoined to n, . 
The decrease in the generalized variance is even more pronounced than in 
Example 1. I n  both examples, a' = (1, 1, 1) and 

p 0.75 2 1  
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TABLE 1 
SU~EAURY OF SIMULATION OF EXAMPLE 1 (100 RUNS) 

Population parameter 

Population value 
bl bz b3 Generalized 

-2.486 4.058 9.464 variance 

Data gro.up 1 (nl) 
Avg. Est. 
MSE 
CRLB 

Data groups 1 and 2 ( n ~  + nt) 
Avg. Est. -2.262 4.005 9.446 
MSE 3.164 1.711 4.092 7.813 
CRLB 3.006 1.490 4.441 

Data groups 1, 2, and 3 (nl + na + nr) 
Avg. Est. -2.320 4.004 9.446 
MSE 2.903 1.711 4.092 6.687 
CRLB 3.918 1.490 4.441 

MSE = Mean square error, CRLB = Cramitr-Rao lower bound. 

3.2. Use of the iuzpvoved index 

We now consider the task of evaluating an individual with only z 1  and z, 
information, say, given the index is trivariate, I = b l z l  + bzzz + b3z3 , and 
at least some of the x-vectors observed contain conlplete information. Three 
methods have been considered for estimating the missing z ,  value: 

(i) Use of 2, from the complete data set of 7z1 observations. 
(ii) Use of p$ , where p*, = p, + d,(x, - p,) + dz (x ,  - p2) and dl  , dz 

arise through the minimization of the variance of p*, . 
(iii) Regression of X ,  on x1 and x2 in the complete data set; that is, & = 

b: + b:xl + b;z, , n~llere b; , 6: , a,nd 6; are estimated by least squares. 

Monte Carlo studies have indicated that method (iii) is superior to the 
others in terms of minimum mean square error. Our procedure for conlparison 
among the methods is to generate a set of conlplete records, choose a subset in 
which one of the traits, say x, , is discarded, use the above methods to estimate 
2, in this subset, compute the index values by using the &vector and the 
estimated x3 values and, finally, compute the mean square errors of the 
indices arising from the use of the three methods. In Table 3, the respective 
mean square errors are given for an example where 12, = 100 trivarinte rec- 
ords a,re used with ?t2 = 50 vectors on xl and x2 for which the actual value 
of 2, is known, but estimated by the above methods. For comparison, the 
mean square error using the full 150 complete vectors and the g-estimates is 
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TABLE 2 
SUMA~ARY OF SIhlUL.4TION O F  EXAMPLE 2 (100 RUNS) 

-- - - - 

Population parameter 

bl 6 2  b 3  Generalized 
Population value -2.486 4.058 9.464 variance 

Data group 1 (nl) 
Avg. Est. 
MSE 
CRLB 

Data groups 1 and 2 (nl + nz) 
Avg. Est. -2.410 4.322 9.482 
MSE 3.341 2.356 5.748 11.645 
CRLB 3.006 1.490 4.441 

Data groups 1, 2, and 3 (nl + nz + ns) 
Avg. Est. -2.408 4.226 9.468 
MSE 3.333 1.389 4.719 4.563 
CRLB 2.982 1.111 3.779 

MSE = Mean square error, CRLB = Cram&-Rao lower bound. 

given. Nun~erous studies have indicated that the regression technique is in 
general quite good. I t  has been found that if the variances are small in 
comparison with the means, the p* estimator is usually the best. However, 
the regression technique is recommended since i t  is more easily used and 
can be extended to deal with two or more missing xi values, as documented by 
Afifi and Elashoff [1967]. 

The philosophy behind estimating the missing phenotypic values is as 
follows: as much information as possible is drawn from the total set of data 
vectors resuIting in optimal b-estimates before recourse is made to estimating 
the missing data. Hence, for individuals with complete data vectors, the 

TABLE 3 
SI~~ULATION RESULTS ON INDEXING PARTIAL DATA VECTORS 

(ALL RESULTS USE 6 ESTIMATES OF b.) 

True X 3  

8 3  Substitution 
p.r*3 Substitution 
Regression estimate 

Mean square error 
(1000 Monte Carlo experiments) 

209.20 
500.62 
394.34 
357.39 
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selection index arising from the b-estimates is an improvement over the index 
constructed only from the complete data set. For individuals with incomplete 
vectors, though index values are assigned by estimating the missing pheno- 
typic values, the resulting index values are compensated for partially by the 
use of the optimal estimation of P and, hence, b. Further, by the use of this 
method of constructing the estimated selection index, improved estimates 
of the phenotypic variances and covariances follow immediately as pointed 
out previously. 

3.3. Henderson's method 

Henderson [I9631 has given a procedure for constructing an index of form 

where pi is the mean of the yi phenotypic value, for a special case of the general 
missing data situation. I n  particular, he considers the case where the data vec- 
tors may be dichotomized into complete data subsets, so that for each subset 
an index can be computed in the usual manner. Let I, = xy,',, bi(yi - and 
I, = xy=l b:(yi - pi) represent these two indices, where some, if not all, of 
the bi and b: are zero. Now, Henderson considers the index 

and shows that b* = P - ' ( t  - i,), where t, and t, are the covariance vectors 
of the phenotypic values y and the breeding values H A  and HB , respectively 
(see Henderson [1963]). 

It should be noted that Henderson, as well as most other workers in this 
field, has assumed P, G, and o! are known, whereas, this paper only assumes 
G and a known. I n  some applications there is sufficient prior data to make 
the assumptions on P, G, and o! tenable, in which case the procedures of 
Henderson [I9631 are optimal. Under these conditions Henderson's method 
will simultaneously give estimates of the mean t a  and the selection index. 

Our procedure is designed expressly for the missing value situation where 
a t  least some of the records are conlplete and P is unknown. Though the 
same estimation procedure on P as described in t,he text could be used if some 
of the infornlation is overlapping between the two groups, i t  is not recom- 
mended, for independent estimates of certain covariances will still be required. 

4. CONCLUSIONS 

Using all multivariate normal data records, both the full and partial 
vectors, a technique is developed for improved estimation on the selection 
index. I n  this process, improved estimates of the phenotypic mean vector and 
covariance matrix are immediate. 

The procedure is extended to the indexing of partial data records, and 
when applicable, a contrast is made to the Henderson [I9631 method. Monte 
Carlo simulation studies are tabulated. 
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The Appendix spells out in considerable detail the general forniulation of 
the estin~ation procedure. Con~puter programs to achieve this estimation can 
be written easily using the matrix notation of the Appendix. 

Several extensions of the above procedure are currently under investi- 
gation by the authors; in particular, a case of a mixed distribution (continuous 
and discrete variates) is currently being prepared for submission. In  addition, 
a complete generalization of the procedure is being studied. 
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ESTIh'IATION D E  L'INDEX D E  SELECTION A PARTIR D E  DONNEES 
MULTIVARIATES NORMALES INCOMPLETES 

RESUME 

On applique une technique l'estimation de l'index de si:lection, au cas oh l'on dispose 
de donn6es multivariates normales incompl6tes. Le procCd6 utilise toutes les donn6es 
disponibles, $. la fois les vecteurs complets et partiels, e t  reprksente une amelioration en 
pr6cision de l'estimateur relativement 9, celui obtenu en utilisant seulement les vecteurs- 
donnBes complets. On obtient aussi $ partir de ce procBd6 des estimateurs des moyennes 
ph6notypiques et de la matrice variance-covariance. 

Les individus ayant des donn6es incompl6tes sont index& par une extension de la 
technique, e t  cet index est oppos6 $ celui proposi: par Henderson. Les r6sultats de simulation 
obtenus sur ordinateur sont tabul6s. 

REFERENCES 

Mfi, A. A. and Elashoff, R. M. [1967]. Missing observations in multivariate statistics 11. 
Point estimation in simple linear regression. J. Amer. Statist. Ass.  68, 10-29. 

Hazel, L. N. [1943]. Genetic basis for selection indices. Genetics 68, 476-90. 
Henderson, C. R. [1963]. Selection index and expected genetic advance. NAS-NRC 

Publ. 988, 141-63. 
Hocking, R. R. and Smith, W. B. [1968]. Estimation of parameters in the multivariate 

normal distribution with missing observations. J. Amer. Statist. Ass.  63, 159-73. 
Hocking, R. R., Smith, W. B., Waldron, B. R., and Oxspring, H. H. [1969a]. Estimation 

of parameters with incomplete data. Technical Report No. 12, Project Themis 
Contract. N00014-68-A-0140, Project NRO 47-700. 

Hocking, R. R., Oxspring, H. H., and Waldron, B. R. [1969b]. Maximum likelihood 
estimation with incomplete normal data, Part I. (Submitted for publication.) 

Kempthorne, 0. and Nordskog, A. W. [1959]. Restricted selection indices. Bionutrics 16, 
10-19. 

Smith, H. F. [1936]. A discriminant function for plant selection. Ann. Ez~gen. 7, 240-50. 
Smith, W. B. and Hocking, R. R. [1968]. A simple method for obtaining the information 

matrix for a multivariate normal distribution. Amer. Statidcan 82, No. 1, 18-20. 
Williams, J. S. [1962]. The evaluation of a selection index. Biometrics 18, 375-93. 



BIOMETRICS, DECEMBER 1970 

APPENDIX 

The general expressions for the estimators of the means and variances 
are given for the case where a t  least some vectors of observations are com- 
plete. As will become clear in the development of the estimators, their virtue 
is the relative ease by which they may be programmed for conlputer com- 
putation. 

I n  order to specify the general expressions for the estimators, it is necessary 
to develop some new notation (see Hocliing et al. [1969a] and [1969b] for the 
complete development). Let q represent the dimensionality of the niulti- 
variate normal population from which the observations are sampled. Assume 
that n, observations are recorded on the kt11 marginal of the q-variate distri- 
bution, where the likelihood function of the kth marginal is given by L, . 
It follows that the complete likelihood is given by L = Ef=, L, , where T 
represents the number of marginal distributions sampled. Let p*, and p*, 
represent the colunln vectors of the parameters from the kth marginal distri- 
bution, where p*, is the column ordering from the P, covariance matrix. When 
Ic = 1, tr*, and p*, are always taken to be the vectors associated with the 
q-variate distribution whether or not any q-variate observations are actually 
recorded; i.e., pf' = , p2 , . . , p9) and 

Further let p-l' = (P", p12, - , pq", where pi' is the (i, j )  elenlent of Pi1. 
Denote by @, and fi, the estimates of p*, and p$ from the Ictll data set associated 
with the kth marginal distribution. 

As given by Hocking and Smith [196S], let A, be the follo.rving $q (q + 1) 
square matrix: 

7 - 

where 

A - --i = 
- ap- 

Let M be the diagonal matrix of dimension $q (q + 1) such that the diagonal 
elements are 2 in rows $r (r + 1) for r = 1, 2, . . , q, and 1 elsewhere. Let 
U, = MA, . I t  now follows that the large sample covariance matrices of 
@; and fi; , denoted by ,V, and ,V, respectively, are: 

ap,, 
aplZ 
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1 1 
lVp = - P1 and ,V, = --U, , 

n1 n1 
where Pl is the covariance matrix associated with the q-variate distribution 
and U, is as given above. The covariance matrix of the lcth marginal is 

when ,Wp = P,/nk and ,WP = --U,/n, , U, = MA,,  and A, is given by (Al) 
with the elements of P, used rather than those of P1 . Notice that if the lcth 
marginal has dimensiona,litg s, Ak is a 4s (s + 1) square matrix. As in Hocking 
et al. [196ga] the joint covariance matrix of the first 1c marginals is block 
dia,gonal with elements 

where Ai , B, , Ci , and Di are defined below. 
Finally, let D, and C, be indicator matrices used to relate the parameters 

associated with the kth marginal and those of the q-variate distribution. 
For example, if we have n1 observations from N,(yT , PI), n2 observations 
from N,(y*, , P,) and 12, observations from N,(tt; , P,), q > r, q > s, then 

The general expressions for the estimators of the means and variances 
are given by: 

where 

and, for t = 2, . . , T, 
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Notice that parts of (A8) and (A9) must be estimated; that is, B, and A, 
are functions of the parameters ~ 1 %  and p*, . It is recommended that the pf 
parameters in (AS) and (A9) be estimated by using the elements of 3, from 
the complete sample for t = 2, . . . , T. It is worthy to note that the esti- 
mators given by (A6) and (A7) are relatively easy to program on a computer 
such that for each data set k,  only C, , D, , and the appropriate data are 
required by the program. 

Example 4: Let q = 2 with n1 observations from N 2 ( ~ T  , PI), n, , and n, 
observations from the univariate marginals, N1(p, , pll) and Nl(p2 , p,,), 
respectively. From (I), i t  follows that r1 2~11~12 2p:2 

U1 = - P11Pzz + p;z 2~12~22 

2~222 

resulting in 

1 
Combining N1(pl , p,,) with N 2 ( ~ T  , PI), we have D, = (1, 0) ,  C, = (1, 0, 0) 

Further, 

The resulting estimators from (A6) and (A7) are: 

where ,.Pi is the estimator of the jth mean from the ith likelihood, and 



SELECTION INDEX FROM PARTIAL NORMAL DATA 637 

where k$i i  is the estimator of p, ,  from the kt11 likelihood. Combining 
Nl(p3 , pZ2) to the above results, we have D, = (0, l), 6, = (0, 0, I), which 
result in 

and so forth. 
In  order to estimate the parameters pi i  arising in A, , B2 and A, , B, , 

the estimates from would be used as indicated previously. Notice that 
i t  is not necessary to spell out B, and A, as we have done here for illustrative 
purposes. Rather, B, and A, are estimated in the forms (A8) and (A9) by 
using P1 , and the resulting numerical matrices are used to find T f i l  and .PI , 
respectively. 

To illustrate numerically the use of the general formulae, we consider the 
following set of data: 

The data are divisible into three sets with n, = 3, 8; = (9, 5), 
fiT = (9,9, 12); n, = 2, = (7), fit = (8) and n, = 2, Q*, = (14)) fi'", = (8). 
As noted above, D, = (1, 0), 6, = (1, 0, 0), D, = (0, I), and C, = (0, 0, 1). 
By (Al) and (A2), 

Traits 

Observations 

S, X, 

12 9 
9 3 
6 3 
9 
5 

16 
12 
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From (AS) and (A9), 

Now 

,al = (I + B,D,)Q: - B 

and 

= (I + A.c.)fi? - A,$; = 

To adjoin the third data set, by (A3) and (A4), we have 

,V, = (I + A,c,),v, = 

From a reapplication of (As) and (AQ) 

0'205 and A3 = - = [  ] 
0.318 

Now 

= ( I  + B,D,)(I + B,D,)~: - ( I  + B3I3,)B2Q: - B3Qg = 

and 

3i i l  = (I  + A,c,)(I + $~,)fi: - ( I  + A,c,)&$: - A,$$ = ('41 
10.37 

Thus, the phenotypic covariance matrix to be used in b = P-'Ga is: 
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I n  order to rank the last 4 observation vectors, the missing x, and x2 values 
would be estimated from the two regression equations, computed from the 3 
complete vectors, x, = 5.25 + 0.75 x2 and x, = -4 + x1 , respectively. Thus 
the selection index for each observation could be easily found by inverting P 
and multiplying i t  by appropriate G and ar matrices. 

Example 5 :  Suppose we have a sample from iV2(vt , P,) and N z ( ~ ;  , P3), 
both of which are nzarginals of N3(vT , PI). Let D i i  and Cii be the nonzero 
rows of D,D; and CiC; respectively. Consider the follo~ving estimators: 

,@2 = QZ + B23(~3~Qz* - D23@*3), 263 = Q: 4- @32(~23@: - D32Q*2), (A10) 

3 ~ 2  = 8," + A23(~32fiz* - c23$%>, zii, = $,* + &2(~23$~ - C32$*2>. 

Notice that D3,Q*, - D2,Q*, , for instance, is nothing more than the vector 
differences of the estiniates of the coinmon parameters. Indeed, when one 
marginal is not a marginal of another, the procedure is to  use a 'double 
application' of the method described in the text. By minimizing the variance 
of the estimators given in (AlO), i t  follo~vs that 

where, for instance, 

1 1 
V,, = - DiXlD2 and Vp2 = - - C2UlC& , 

nz n2 

The estimators 3@2 , and 3ij2 , ,P3 are combined to give the following com- 
plete estimators: 

To adjoin additional information, given that the parameters of the new 
lilrelihood are not a subset of those previously considered, the expressions 
given by (A10) are again used with ,Q1 , ,@, from (All)  adjoined with the 
parameters of the new likelihood in the same 'double application' manner. 

By substituting the expressions given by (A10) into (All) ,  i t  is possible 
to arrive a t  equations analogous to (A6) and (A7). However, no general 
expressions follow for the case in which n, = 0 as they do when n, > 0. 
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