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SUMMARY

A technique is applied to the estimation of the selection index, when incomplete
multivariate normal data records are available. The procedure utilizes all data available,
both full and partial vectors, and represents an improvement in precision of the estimator
over that found by using the full data vectors only. Estimates of phenotypic means and
variance-covariance matrix also result from the procedure,

Individuals with partial data records are indexed by an extension of the technique,
and this index is contrasted to that proposed by Henderson. The results of computer
simulations are tabulated.

1. INTRODUCTION

The purpose of this research is to estimate the selection index from
multivariate normal data which may have some observation vectors with
missing elements. The selection index is a well-known procedure for grading
individuals in large groups. For a thorough review of relevant work on this
topic see Williams [1962]. Briefly we may note that Fairfield Smith [1936]
originally developed the selection index in order to discriminate in selection
programs among varieties of plants. Hazel [1943] initially applied the pro-
cedure to animal breeding programs. An extension of the technique was
developed by Kempthorne and Nordskog [1959] in which the breeder could
hold genetic values constant for some traits in the index as selection pro-
gressed. Henderson [1963] delineated the selection index procedure in the
case where different information on individuals to be indexed was available
(the phenotypic means assumed known), and indicated an alternative method
for dealing with unequal information under these conditions. Williams {1962]
devised a method for evaluating and comparing the four different indices he
defined, giving particular attention to the estimation of the phenotypic and
genotypic variance-covariance matrices in the commonly used estimated
index.

Defining

I; = b'x;, )
where I; is a composite index value associated with the jth member of the
population, b is an n X 1 vector of unknown coeflicients, and x; isann X 1

vector of phenotypic values (observations) on the jth member of the popula-
tion, Smith [1936] shows that

b = P 'Ge 2)
625
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In this context P is the n X n covariance matrix of phenotypie values, G
is the n X n matrix of genotypic values, and « is the n X 1 veetor of economic
weights associated with the n traits.

The problem of estimating b has been attacked by many authors notably
Henderson [1963]. This study estimates b using all infofmation available
(i.e. both full and incomplete data records) by estimating the elements of
the matrix P, assuming both G and « known. The method of attack will
be to apply and extend the technique of Hocking and Smith [1968]. This
procedure was developed to estimate the parameters of a multivariate normal
distribution in the presence of partial data, and the technique has been shown
to lead to estimates which are consistent and asymptotically efficient. The
method can be summarized as follows:

(1) Divide the data into groups aecording to which phenotypic values
are missing.

(2) Within each group find the best estimate of all possible parameters.

(3) Sequentially adjoin, optimally, the information in each partial data
group to the full data group.

In summary the above technique is applied to the selection index problem;
the resulting estimates of b, P, and the vector, g, of the phenotypic means are
considerably ‘better’ than those using only the full data vectors. Extended
Monte Carlo simulations are used to support this claim. In addition, the
procedure is used in indexing individuals with partial data records, and con-
trasts with the method of Henderson [1963] are made.

2. ESTIMATION PROCEDURE

Assuming the x; vectors are distributed as multivariate normal, that is,
x; ~ N,(u, P), we will now give a general procedure which utilizes all infor-
mation arising from both complete and incomplete x; vectors. As examples of
the procedure consider two different cases: (1) some of the x; vectors contain
complete information on all » traits and (2) none of the x; vectors contain
complete information. In both cases, the improvement in the estimation of b
is induced by improving the estimates of p;; , the elements of the phenotypic
covariance matrix, P. Thus, in the process of estimating b, improved esti-
mates of the phenotypic variances and covariances follow directly. In addi-
tion, improved estimates of the phenotypic vector of means, y, may be
computed by the application of the procedure used to estimate the p,; .

The procedure used to estimate p,; optimally was developed by Hocking
and Smith [1968] and will be briefly described by the examples below. The
procedure is sequential, not iterative. These examples are given only to
illustrate the technique; the general formulation is given in the Appendix.

2.1, Case 1—Some complete x;-vectors

We consider two examples, both involving 3 traits, z, , 2, , and 2; . In
Example 1, assume that we have n, complete vectors, n, vectors with infor-
mation on z, and 2, , and n, vectors with information only on z, . In Example
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2, n, and n, are unchanged but we have n; vectors with information on r,
and z; . Schematically, we have:

Example 1 Example 2

Number of Number of

observations observations

Traits Ny Ny N Traits Ny Mg 7N
N X X X z, X X

o X X o X X X

T3 X T3 X X

The procedure will be described only for estimates of the phenotypic
means, uy , M2 , and py in Example 1. Generalizations to the p;; estimates
follow the same pattern.

The first step is to adjoin to the n, vectors of z, , 2, , and z, the n, vectors
on z, and x, as follows:

B o= ap ali(xﬁl - 2ﬁ1) + agi Gz — 2fte) 1=1,23, (3)

where ~ indicates the improved estimate and ;; denotes the estimate of g;
obtained from the n; data only.
Notice that if a,; and a,; are constants,

E[5;] = Elig:] = i - 4)

In order to find the coefficients a,; and a,; , the variance of ,u; is minimized
with respect to them. The results are:

i=1, ;= —n/(n, +n)  ay =0; ()

i=2, a;=0 zi = —Ma/ (4 + 1o); (6)

1 =3, @i = ~N(PrsPas — Pralas)/ M + 1) (D1uPaz — i), )
Gz = —Ny(PasPar — PraPrs)/(a + 1) PriPaz — D)

Notice that ,f; and @, are the simple weighted means as one would expect.
The n, x,-vectors are incorporated as follows:

e = 1fe o (GE — ). (8)

As before, a* arises from minimizing the variance of i, . The general
procedure to estimate the u; or p,; is:

(i) For each type of vector n; , compute the appropriate statistics as
if n; were a complete sample.

(ii) Adjoin sequentially to the complete vector n, the n, , forming the
linear combinations as illustrated above. In each step, the adjoined differences
must have expectation zero, given that a,; , a.; , a* are constants.
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In general, the coeflicients of the differences in the linear combinations
are functions of the parameters (e.g. a,; and a,; in Example 1 for 7z = 3).
Consequently, the parameters in these coefficients must be estimated. Hock-
ing and Smith [1968] have shown that in the case of nested data the esti-
mators, g, and §,; , and the estimators, §, and $,; , are invariant to which-
ever estimates of the parameters are selected in the coefficients; i.e. ; and
Pis, By and §y; , or f; and P;; . In (7), for example, the “, ~, and ™ estimators
could be used without altering the estimate given by (4). In general, resulting
estimators are consistent and for small sample sizes, the bias appears to be
slight (see Hocking and Smith [1968] p. 171).

2.2. Case 2—No complete x;-vectors

We consider only one example of this type: n, vectors with information
on z; and z, , and n, vectors with information on 2, and x; . Schematically,
we have:

Example 3
Number of
observations
Traits 'n1 Ny
Z X
Zy X
T3

For this procedure, an independent estimate of p,; is required since the
data in the above configuration will not supply an estimate of this parameter.
The procedure for deriving the estimators for Case 2 problems is indicated
via Example 5 in the Appendix.

It is interesting to note, though somewhat difficult to prove in general,
that, in both Cases 1 and 2, as the data sets n; are adjoined sequentially to
ny , the estimates of the b; for the current sequence are the same as the b,
in the previous sequence for all those traits which are not common to n; and
ni_y . That is, in Example 1, b = by = by and b, = b, , and in Example 2,
b, = b, and by = bs .

3. MONTE CARLO RESULTS AND THE INCOMPLETE
INFORMATION CASE

3.1. Demonstration of improved index estimates

Hocking and Smith [1968] have shown analytically and by Monte Carlo
studies that the estimates of the variances and covariances arising from the
procedures described above using the incomplete data vectors are sub-
stantially more precise than the estimates based on the complete data only.
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It will be shown that the same can be said about the estimation of b and,
hence, the selection index I.

In the following examples, the means were assumed to be zero without loss
of generality. In each example, 100 Monte Carlo trials were executed and the
average estimate as well as the mean square error of the estimates were
computed. Further, the generalized variance, [V(b)|, of the estimates was
determined, V(b) being the sample covariance matrix of the b-vector. For
each estimate, the Cramér-Rao minimum variance bound (Smith and
Hocking [1968]) was computed to give comparison with the mean square error,

In both examples, o' = (10, 10, 10); that is, equal economie weights were
chosen for each trait. Experience with a variety of economic weight vectors «
has shown that the efficiency of the estimate of b is dependent to some extent
on the relative magnitude of the weights. That is, if the heaviest weight is
given to the trait that has the least number of observations on it, the estimate
is eonsiderably more efficient than the complete data vector only estimate.
However, a heavy weight on a trait that is observed in most, if not all, data
vectors produces an estimate that is only slightly more efficient than the
complete data estimate.

In Example 1, n, = 100 vectors were taken from N,(0, ;P), n, = 50
vectors from N,(0, ,P), and ny = 25 vectors from N, (0, ,P), where

7 2 6
P=126 35 2P=i:7 2} P =11
6 3.5 8 2 6

The results are given in Table 1, where data group 1 represents the complete
data vector set. Notice that the bias, as well as the mean square error of
the estimates, is measurably decreased as more information (n, , then ng) is
adjoined to n; . As remarked previously, if no further information is adjoined
from one data group to the next on a specific trait, the b-coefficient associated
with that trait, as well as its mean square error, remains unchanged. For
instance, the average value of b; remains constant with the addition to n, of
n, and then n; , since the n, and n, data vectors contain no information on z; .

In Example 2, n, = 100 veetors were taken from N,(0, .P), n, = 50
vectors from N,(0, .P), and n; = 50 vectors from N,(0, ,P), where

P = [6 3.5}.
35 8

The results are given in Table 2. As in Example 1, the improvement in the
estimation of b is apparent as the n, and n; information is adjoined to n, .
The decrease in the generalized variance is even more pronounced than in
Example 1. In both examples, o’ = (1,1, 1) and

2 0.75 2
G =075 3 1.5
2 1.5 4
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TABLE 1
SUMMARY OF SIMULATION oF ExaMrrLE 1 (100 rRUNS)

Population parameter

b b: b Generalized
Population value —2.486 4.058 9.464 variance
Data group 1 (ny)
Avg. Est, —2.166 4.054 9.446
MSE 4.032 2.169 4.092 14.949
CRLB 3.397 2.031 4.441
Data groups 1 and 2 (ny + ny)
Avg. Est, —2.262 4.005 9.446
MSE 3.164 1.711 4.092 7.813
CRLB 3.006 1.490 4.441
Data groups 1, 2, and 3 (n1 + ny + na)
Avg. Est. —2.320 4.004 9.446
MSE 2.903 1.711 4.092 6.687
CRLB 2.918 1.490 4. 441

MSE = Mean square error, CRLB = Cramér-Rao lower bound.

3.2. Use of the improved index

We now consider the task of evaluating an individual with only z, and x,
information, say, given the index is trivariate, I = bx;, +~ bws -+ bszs , and
at least some of the x-vectors observed contain complete information. Three
methods have been considered for estimating the missing x; value:

(i) Use of £, from the complete data set of n, observations.
(i) Use of u% , where p% = 13 + dy(wy — f) + do(xe — o) and d, , da
arise through the minimization of the variance of u% .
(iii) Regression of z; on z, and 2, in the complete data set; that is, #; =
b} -+ blz, + blx, , where b} , b{ , and b} are estimated by least squares.

Monte Carlo studies have indicated that method (iii) is superior to the
others in terms of minimum mean square error. Our procedure for comparison
among the methods is to generate a set of complete records, choose a subset in
which one of the traits, say z; , is discarded, use the above methods to estimate
x; in this subset, compute the index values by using the b-vector and the
estimated z; values and, finally, compute the mean square errors of the
indices arising from the use of the three methods. In Table 3, the respective
mean square errors are given for an example where n; = 100 trivariate rec-
ords are used with n, = 50 vectors on z; and z, for which the actual value
of z; is known, but estimated by the above methods. For comparison, the
mean square error using the full 150 complete vectors and the b-estimates is



SELECTION INDEX FROM PARTIAL NORMAL DATA 631

TABLE 2
SUMMARY OF SIMULATION OF ExampLE 2 (100 ROUNS)

Population parameter

by by bs Generalized
Population value —2.486 4.058 9.464 variance
Data group 1 (n1)
Avg. Est. —2.388 4.467 9.482
MSE 3.793 3.285 5.748 26.307
CRLB 3.397 2.031 4.441
Data groups 1 and 2 (n1 -+ ny)
Avg. Est. —2.410 4.322 9.482
MSE 3.341 2.356 5.748 11.645
CRLB 3.006 1.490 4.441
Data groups 1, 2, and 3 (n1 + ns + ns)
Avg. Est. —2.408 4.226 9.468
MSE 3.333 1.3890 4.719 4,563
CRLB 2.982 1.111 3.779

MSE = Mean square error, CRLB = Cramér-Rao lower bound.

given. Numerous studies have indicated that the regression technique is in
general quite good. It has been found that if the variances are small in
comparison with the means, the u* estimator is usually the best. However,
the regression technique is recommended since it is more easily used and
can be extended to deal with two or more missing x; values, as documented by
Afifi and Elashoff [1967].

The philosophy behind estimating the missing phenotypic values is as
follows: as much information as possible is drawn from the total set of data
vectors resulting in optimal b-estimates before recourse is made to estimating
the missing data. Henece, for individuals with complete data vectors, the

TABLE 3

SIMULATION RESULTS ON INDEXING PARTIAL DATA VECTORS
(ALL RESULTS USE b ESTIMATES OF b.)

Mean square error
(1000 Monte Carlo experiments)

True X; 200.20
X; Substitution 500.62
u% Substitution 304.34

Regression estimate 357.39
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selection index arising from the b-estimates is an improvement over the index
constructed only from the complete data set. For individuals with incemplete
vectors, though index values are assigned by estimating the missing pheno-
typic values, the resulting index values are compensated for partially by the
use of the optimal estimation of P -and, hence, b. Further, by the use of this
method of constructing the estimated selection index, improved estimates
of the phenotypic variances and covariances follow immediately as pointed
out previously.

3.3. Henderson’s method
Henderson [1963] has given a procedure for constructing an index of form

I=0b,(y, — p) 4+ bolys — o) + -+ + by(yry — nv), )

where u; is the mean of the y; phenotypic value, for a special case of the general
missing data situation. In particular, he considers the case where the data vec-
tors may be dichotomized into complete data subsets, so that for each subset
an index can be computed in the usual manner. Let I, = D, b;(y; — u;) and
Iy = D%, bi(y; — u:) represent these two indices, where some, if not all, of
the b; and b} are zero. Now, Henderson considers the index

N
Ip = 2 (b — by: = b¥y
i=1
and shows that b* = P7*(f, — 15), where t, and t; are the covariance vectors
of the phenotypic values y and the breeding values H, and H , respectively
(see Henderson [1963]).

It should be noted that Henderson, as well as most other workers in this
field, has assumed P, G, and « are known, whereas, this paper only assumes
G and « known. In some applications there is sufficient prior data to make
the assumptions on P, G, and « tenable, in which case the procedures of
Henderson [1963] are optimal. Under these conditions Henderson’s method
will simultaneously give estimates of the mean u and the selection index.

Our procedure is designed expressly for the missing value situation where
at least some of the records are complete and P is unknown. Though the
same estimation procedure on P as described in the text could be used if some
of the information is overlapping between the two groups, it is not recom-
mended, for independent estimates of certain covariances will still be required.

4. CONCLUSIONS

Using all multivariate normal data records, both the full and partial
vectors, a technique is developed for improved estimation on the selection
index. In this process, improved estimates of the phenotypic mean vector and
covariance matrix are immediate.

The procedure is extended to the indexing of partial data records, and
when applicable, a contrast is made to the Henderson [1963] method. Monte
Carlo simulation studies are tabulated.
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The Appendix spells out in considerable detail the general formulation of
the estimation procedure. Computer programs to achieve this estimation can
be written easily using the matrix notation of the Appendix.

Several extensions of the above procedure are currently under investi-
gation by the authors; in particular, a case of a mixed distribution (continuous
and discrete variates) is currently being prepared for submission. In addition,
a complete generalization of the procedure is being studied.
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ESTIMATION DE L'INDEX DE SELECTION A PARTIR DE DONNEES
MULTIVARIATES NORMALES INCOMPLETES

RESUME

On applique une technique & Vestimation de 'index de sélection, au cas oli 'on dispose
de données multivariates normales incomplétes. Le proeédé utilise toutes les données
disponibles, & la fois les vecteurs complets et partiels, et représente une amélioration en
précision de Vestimateur relativement & celui obtenu en utilisant seulement les vecteurs-
données complets. On obtient aussi & partir de ce procédé des estimateurs des moyennes
phénotypiques et de la matrice variance-covariance.

Les individus ayant des données incomplétes sont indexés par une extension de la
technique, et cet index est opposé & celui proposé par Henderson, Les résultats de simulation
obtenus sur ordinateur sont tabulés.

REFERENCES

Afifi, A, A. and Elashoff, R. M. [1967]. Missing observations in multivariate statistics II.
Point estimation in simple linear regression. J. Amer. Statist. Ass. 62, 10-29.

Hazel, L. N. [1943). Genetic basis for selection indices. Genetics 28, 476-90.

Henderson, C. R. [1963]. Selection index and expected genetic advance. NAS-NEC
Publ. 982, 141-63.

Hocking, R. R. and Smith, W. B. [1968]. Estimation of parameters in the multivariate
normal distribution with missing observations. J. Amer. Statist. Ass. 63, 159-73.
Hocking, R. R., Smith, W. B., Waldron, B. R., and Oxspring, H. H. [1969a]. Estimation

of parameters with incomplete data. Technical Report No. 12, Project Themis
Contract. N00014-68-A-0140, Project NRO 47-700.
Hocking, R. R., Oxspring, H. H., and Waldron, B. R. [1960b]. Maximum likelihood
estimation with incomplete normal data, Part I. (Submitted for publication.)
Kempthorne, O. and Nordskog, A. W. [1959]. Restricted selection indices. Biometrics 15,
10-19.

Smith, H. F. [1936]. A discriminant function for plant selection. Ann. Eugen. 7, 240-50.
Smith, W. B. and Hocking, R. R. {1968]. A simple method for obtaining the information
matrix for a multivariate normal distribution. 4mer. Statistican 22, No. 1, 18-20.

Williams, J. 8. {1962]. The evaluation of a selection index. Biometrics 18, 375-93.




634 BIOMETRICS, DECEMBER 1970

APPENDIX

GENERAL EXPRESSIONS FOR THE ESTIMATORS

The general expressions for the estimators of the means and variances
are given for the case where at least some vectors of observations are com-
plete. As will become clear in the development of the estimators, their virtue
is the relative ease by which they may be programmed for computer com-
putation.

In order to specify the general expressions for the estimators, it is necessary
to develop some new notation (see Hocking et al. {1969a] and [1969b] for the
complete development). Let ¢ represent the dimensionality of the multi-
variate normal population from which the observations are sampled. Assume
that 7, observations are recorded on the kth marginal of the ¢g-variate distri-
bution, where the likelihood function of the kth marginal is given by L, .
It follows that the complete likelihood is given by L = II7., L, , where T
represents the number of marginal distributions sampled. Let u% and p%
represent the column vectors of the parameters from the kth marginal distri-
bution, where p% is the column ordering from the P, covariance matrix. When
k = 1, u%* and p*% are always taken to be the vectors associated with the
g-variate distribution whether or not any ¢-variate observations are actually
recorded; ie., u¥ = (uy, g2, <+ * , p) a0d

P¥ = (Pi1, Pizs Doz, P1a s Doz s Pazs *** 5 Pad)e

Further let p~™ = (p*, p'%, -+, p*), where p*’ is the (4, ) element of P;*,
Denote by @i, and p. the estimates of y% and p*% from the kth data set associated
with the kth marginal distribution.

As given by Hocking and Smith [1968], let A, be the following 3¢ (¢ + 1)
square matrix:

(opy Ope | Pu
apll 3 apll ] apll
9p1y
ap' |
A, = a;l))“ = 8?12 ’ ] (A1)
9puy v 9P
_apaq H apuau
where
opy;  —1 2 if u=vw
6puv - Kup (p{upiv + pivp;'u); Iiuv - .

1 if w=v

Let M be the diagonal matrix of dimension ¢ (g 4+ 1) such that the diagonal
elements are 2in rows 3r (r + 1) forr = 1,2, .-+, ¢, and 1 elsewhere. Let
U, = MA, . It now follows that the large sample covariance matrices of
@* and p*% | denoted by ,V, and ,V, respectively, are:
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1 1
V.= ,'7 P, and ,V, = "’7'; U, (A2)

1

where P, is the covariance matrix associated with the g-variate distribution
and U, is as given above. The covariance matrix of the kth marginal is
W= W, | 0
0 W,
when \W, = P,/n, and \W, = —U,/n,, U, = MA,, and A, is given by (Al)
with the elements of P, used rather than those of P, . Notice that if the kth
marginal has dimensionality s, A, is a Zs (s + 1) square matrix. As in Hocking
et al. [1969a] the joint covariance matrix of the first & marginals is block
diagonal with elements

kVM = H (I + BiDi)lvu y (A3)
i=k
2 .

kVp = IIk (I + Aici)lvp 3 (A4)

where A; , B;, C; , and D; are defined below.

Finally, let D, and C; be indicator matrices used to relate the parameters
associated with the kth marginal and those of the g¢-variate distribution.
For example, if we have 7, observations from N, (u* , P,), n, observations
from N,(u% , P,) and n, observations from N,(u% , Ps), ¢ > 7, ¢ > s, then

uf = Doyt , pf=0Cpf, uf=Daf, p&=Cpf. (A5

The general expressions for the estimators of the means and variances
are given by:

2 -1 §+1
oy = H (I+ BDyor — 3 ,Hw (I+ B.D)B,a} — B.gt  (A6)
- == 1‘=2 o =
2 " T—1 41 “ “ "
o = kI]; (I+ ACopr — X kHTa + A.CoApF — ApE, (A7)
= i=2 k=

where

2

:;IL (I + ]§ka) = (I + ﬁTDT)(I + Er—lDT—l) e (I + ]§2D2)

i+l
g (I + Bka) = (I + BTDT)(I + BT‘IDT—I) e (I + B:‘+1Di+1)
g (I -+ Akck) = (I + ATCT)(I + AT—ICT—I) ot (I + Azcz)

i+l

kl__IT (I + Aka) = (I + ATCT)(I + AT——ICT—-I) et (I + Ai+lci+l)

a
]

and, fort = 2, -+- , T,

-1
Bt = _t—lqu;[Dt<t—-qu + ;%— P1>D{j| (AS)
'
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-1
At = —z-lvpcf’:ct(t-lvp - 'rLiUI)C::I . (Ag)
¢

Notice that parts of (A8) and (A9) must be estimated; that is, B, and A,
are functions of the parameters y% and p% . It is recommended that the p*
parameters in (A8) and (A9) be estimated by using the elements of p, from
the complete sample for ¢t = 2, ... , T. It is worthy to note that the esti-
mators given by (A6) and (A7) are relatively easy to program on a computer
such that for each data set k, only C, , D, , and the appropriate data are
required by the program.

Example 4: Let ¢ = 2 with n, observations from N,(y* , P,), n, , and n,
observations from the univariate marginals, Ni(u; , p11) and N,(us , Paa),
respectively. From (1), it follows that

217?1 2p1P1e 2??2
g, =- P1ilee + pfz 2P12Ds2 |
21’22

Combining N, (g, , p.,) with N,(u% , P,), we have D, = (1, 0), C; = (1, 0, 0)
resulting in

1 (p 1 1 - —n, P
N (RS
: 7y \P21 31 + Uz Pu Ny + Ny P ’

2?731 1
1 n -+ n - —n
A, = —n—l 2011012 (‘l;z_l;z_z_z 22321,1) = ?Z1 +2n2 pw/pu .
2% piz/pflj

Further,

vt b
! ! : P12/Pu O

J 1 001
1 No

'_77; - 1y + g pxz/pu 00 J’Ul .
(p1/p1)’ 0 O
The resulting estimators from (A6) and (A7) are:

_ 1ﬂ1] Ng ’: 1 :} "
oflh = NN (1[»‘1 - 2ﬂ1);
Lﬁz M /b

where ;f; is the estimator of the jth mean from the sth likelihood, and

2Vp

lﬁll 1

n A A A
D= | P | — nl _{2_ . plz/pu (P — 2B11),

Pae Bua/Pu)’
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where p;; is the estimator of p,; from the kth likelihood. Combining
Ni{us , ps2) to the above results, we have D, = (0, 1), C; = (0, 0, 1), which

result in
B. = _l_ i Przj _ Ny Dz [nl + nap i U P_?_z:l_l
¢ n, 7y + Ny | o / 1Ny 2 .y + ny) P11 !
L (D22 12/Pn
[ pfz pfz
1 Ny 3 [7% + 71 s N Zﬁz]‘l
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and so forth.

In order to estimate the parameters p;; arising in A, , B, and A, , B, ,
the estimates from P, would be used as indicated previously. Notice that
it is not necessary to spell out B, and A, as we have done here for illustrative
purposes. Rather, B, and A, are estimated in the forms (A8) and (A9) by
using P, , and the resulting numerical matrices are used to find ,f; and ., ,
respectively.

To illustrate numerically the use of the general formulae, we consider the
following set of data:

Traits X, X,
Observations 12 9
9 3
6 3
9
5
16
12
The data are divisible into three sets with n, = 3, §* = (9, 5),

Bt =1(9,9,12);n, = 2,4% = (7), p% = (8) and ny = 2, 9% = (14), p% = (8).
As noted above, D, = (1,0), C; = (1,0,0),D; = (0, 1), and C; = (0, 0, 1).
By (A1) and (A2),

V= r3 3};
162 162 162 13 4
U, = —|162 189 216, [54 54 54
162 216 288 WV, = |54 63 72|
|54 ?2 96
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From (A8) and (A9),
0.4
B, = —[0'4} and A, = —|0.4|, respectively.
04 04
Now
& = (1+ B.D)gt — Bugt = [8'2}
4.2
and
8.6
B = (T4 AC)pr — Apf = | 86|
11.6

To adjoin the third data set, by (A3) and (A4), we have

M=G+EMM=F8Lﬂ’
18 2.8
324 324 324
2V, = (T4 A,C),V, = {324 414 504/, respectively.
324 504 744
From a reapplication of (AS) and (A9)
0.148
B, = —[0'205} and A, = —|0.231 |
0.318 0.341
Now
mw=a+ﬁmmy+mmmp_a+ﬁmﬁm§_&ﬁ=[mm}
7.32
and
8.07
B = (T + AC)(I + ACHpr ~ (14 ACohupy — Adpy = | 7.77)-
10.37

Thus, the phenotypic covariance matrix to be used in b = P™'Ga is

P=Fm mq
7707 10.37
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In order to rank the last 4 observation vectors, the missing 2; and x, values
would be estimated from the two regression equations, computed from the 3
complete veetors, 2, = 5.25 + 0.75 z, and x, = —4 + z, , respectively. Thus
the selection index for each observation could be easily found by inverting P
and multiplying it by appropriate G and « matrices.

Example 5: Suppose we have a sample from N.(u% , Py) and N,(u% , Pa),
both of which are marginals of Na(u% , P;). Let D,; and C,; be the nonzero
rows of D;D/ and C,C/ respectively. Consider the following estimators:

oz = §F + Boo(Daohd — Daoh®), ol = 85 + Baa(Dasdf — Duc}), (A10)
3f)z = f)rf -+ A23(Ca213§‘ - Czsf)#s‘), 2f’3 = f)gk + A32(C2313§k - Cazf’t)-

Notice that Da.i% — D% , for instance, is nothing more than the vector
differences of the estimates of the common parameters. Indeed, when one
marginal is not a marginal of another, the procedure is to use a ‘double
application’ of the method described in the text. By minimizing the variance
of the estimators given in (A10), it follows that

B = —V,.D}(DeV,uDly + DyV,.Di) 7Y
By = —V,5D4u(DsoV,uDis + DyyV,sDio) 7,
Bgy = —V,5C0(CV,5Cl + CosV,sClha) ™,
Ay = ~V,5C5(CasV,,Chs + CasV,5Cla) 7,

where, for instance,

I

Vi = L DJED, and V,, = — L CULC.
N N2

The estimators sfiz , »fis and s, , s are combined to give the following com-
plete estimators:

sty = Déa@z + (I - DéDz)Dé ofts 3131 = Cj 3132 + (I - C£C2)C§2ﬁ3 . (All)

To adjoin additional information, given that the parameters of the new
likelihood are not a subset of those previously considered, the expressions
given by (A10) are again used with .f, , ;p, from (All) adjoined with the
parameters of the new likelihood in the same ‘double application’ manner.

By substituting the expressions given by (A10) into (A1l), it is possible
to arrive at equations analogous to (A6) and (A7). However, no general
expressions follow for the case in which n, = 0 as they do when n, > 0.
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