69 research outputs found

    Tropical coastal habitats as surrogates of fish community structure, grazing, and fisheries value

    Get PDF
    Habitat maps are frequently invoked as surrogates of biodiversity to aid the design of networks of marine reserves. Maps are used to maximize habitat heterogeneity in reserves because this is likely to maximize the number of species protected. However, the technique's efficacy is limited by intra-habitat variability in the species present and their abundances. Although communities are expected to vary among patches of the same habitat, this variability is poorly documented and rarely incorporated into reserve planning. To examine intra-habitat variability in coral-reef fishes, we generated a data set from eight tropical coastal habitats and six islands in the Bahamian archipelago using underwater visual censuses. Firstly, we provide further support for habitat heterogeneity as a surrogate of biodiversity as each predefined habitat type supported a distinct assemblage of fishes. Intrahabitat variability in fish community structure at scales of hundreds of kilometers (among islands) was significant in at least 75% of the habitats studied, depending on whether presence/absence, density, or biomass data were used. Intra-habitat variability was positively correlated with the mean number of species in that habitat when density and biomass data were used. Such relationships provide a proxy for the assessment of intra-habitat variability when detailed quantitative data are scarce. Intra-habitat variability was examined in more detail for one habitat (forereefs visually dominated by Montastraea corals). Variability in community structure among islands was driven by small, demersal families (e. g., territorial pomacentrid and labrid fishes). Finally, we examined the ecological and economic significance of intra-habitat variability in fish assemblages on Montastraea reefs by identifying how this variability affects the composition and abundances of fishes in different functional groups, the key ecosystem process of parrotfish grazing, and the ecosystem service of value of commercially important finfish. There were significant differences in a range of functional groups and grazing, but not fisheries value. Variability at the scale of tens of kilometers (among reefs around an island) was less than that among islands. Caribbean marine reserves should be replicated at scales of hundreds of kilometers, particularly for species-rich habitats, to capture important intra-habitat variability in community structure, function, and an ecosystem process

    The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)

    Get PDF
    Climate change is a world-wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil-plant-atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high-quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re-use, synthesis and upscaling. Many of these challenges relate to a lack of an established 'best practice' for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. To overcome these challenges, we collected best-practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re-use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re-use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second-order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world.Peer reviewe

    Meta-analysis of multidecadal biodiversity trends in Europe

    Get PDF
    Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising similar to 6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. The global biodiversity decline might conceal complex local and group-specific trends. Here the authors report a quantitative synthesis of longterm biodiversity trends across Europe, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa.peerReviewe

    The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)

    Get PDF
    1. Climate change is a world‐wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high‐quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. 2. To overcome these challenges, we collected best‐practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re‐use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re‐use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second‐order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world

    Dynamic navicular motion measured using a stretch sensor is different between walking and running, and between over-ground and treadmill conditions

    Get PDF
    BACKGROUND: Non-invasive evaluation of in-shoe foot motion has traditionally been difficult. Recently a novel 'stretch-sensor' was proposed as an easy and reliable method to measure dynamic foot (navicular) motion. Further validation of this method is needed to determine how different gait analysis protocols affect dynamic navicular motion. METHODS: Potential differences in magnitude and peak velocity of navicular motion using the 'stretch sensor' between (i) barefoot and shod conditions; (ii) overground and treadmill gait; and/or (iii) running and walking were evaluated in 26 healthy participants. Comparisons were made using paired t-tests. RESULTS: Magnitude and velocity of navicular motion was not different between barefoot and shod walking on the treadmill. Compared to walking, velocity of navicular motion during running was 59% and 210% higher over-ground (p < 0.0001) and on a treadmill (p < 0.0001) respectively, and magnitude of navicular motion was 23% higher during over-ground running compared to over-ground walking (p = 0.02). Compared to over-ground, magnitude of navicular motion on a treadmill was 21% and 16% greater during walking (p = 0.0004) and running (p = 0003) respectively. Additionally, maximal velocity of navicular motion during treadmill walking was 48% less than walking over-ground (p < 0.0001). CONCLUSION: The presence of footwear has minimal impact on navicular motion during walking. Differences in navicular motion between walking and running, and treadmill and over-ground gait highlight the importance of task specificity during gait analysis. Task specificity should be considered during design of future research trials and in clinical practice when measuring navicular motion
    corecore