27 research outputs found

    Dust Content, Galaxy Orientations, and Shape Noise in Imaging Surveys

    Full text link
    We show that dust absorption in disk galaxies leads to a color- and orientation-dependent centroid shift which is expected to be observable in multi-band imaging surveys. This centroid shift is an interesting new probe which contains astrophysically and cosmologically relevant information: it can be used to probe the dust content of a large sample of galaxies, and to reduce the shape noise due to inclination of disk galaxies for weak lensing shear. Specifically, we find that data sets comparable to CFHTLenS, the Dark Energy Survey (DES) or the Hyper Suprime-Cam (HSC) survey should provide a dust measurement for several hundred galaxies per square degree. Conversely, given knowledge of the dust optical depth, this technique will significantly lower the shape noise for the brightest galaxies in the sample (signal-to-noise greater than a few hundred), thereby increasing their relative importance for the weak lensing shear measurement.Comment: 14 pages, 10 figures, published in Astrophysical Journa

    The Evolution of Post-Starburst Galaxies from z1z\sim1 to the Present

    Full text link
    Post-starburst galaxies are in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies, and therefore hold important clues for our understanding of galaxy evolution. In this paper, we systematically searched for and identified a large sample of post-starburst galaxies from the spectroscopic dataset of the Sloan Digital Sky Survey (SDSS) Data Release 9. In total, we found more than 6000 objects with redshifts between z0.05z\sim0.05 and z1.3z\sim1.3, making this the largest sample of post-starburst galaxies in the literature. We calculated the luminosity function of the post-starburst galaxies using two uniformly selected subsamples: the SDSS Main Galaxy Sample and the Baryon Oscillation Spectroscopic Survey CMASS Sample. The luminosity functions are reasonably fit by half-Gaussian functions. The peak magnitudes shift as a function of redshift from M23.5M\sim-23.5 at z0.8z\sim0.8 to M20.3M\sim-20.3 at z0.1z\sim0.1. This is consistent with the downsizing trend, whereby more massive galaxies form earlier than low-mass galaxies. We compared the mass of the post-starburst stellar population found in our sample to the decline of the global star-formation rate and found that only a small amount (1%\sim1\%) of all star-formation quenching in the redshift range z=0.20.7z=0.2-0.7 results in post-starburst galaxies in the luminosity range our sample is sensitive to. Therefore, luminous post-starburst galaxies are not the place where most of the decline in star-formation rate of the universe is happening.Comment: 26 pages, 24 figures, 8 tables. Accepted for publication in The Astrophysical Journa

    Discovery of Four High Proper Motion L Dwarfs, Including a 10 pc L Dwarf at the L/T Transition

    Get PDF
    We discover four high proper motion L dwarfs by comparing the Wide-field Infrared Survey Explorer (WISE) to the Two Micron All Sky Survey (2MASS). WISE J140533.32+835030.5 is an L dwarf at the L/T transition with a proper motion of 0.85+/-0.02" yr^-1, previously overlooked due to its proximity to a bright star (V=12 mag). From optical spectroscopy we find a spectral type of L8, and from moderate-resolution J band spectroscopy we find a near-infrared spectral type of L9. We find WISE J140533.32+835030.5 to have a distance of 9.7+/-1.7 pc, bringing the number of L dwarfs at the L/T transition within 10 pc from six to seven. WISE J040137.21+284951.7, WISE J040418.01+412735.6, and WISE J062442.37+662625.6 are all early L dwarfs within 25 pc, and were classified using optical and low-resolution near-infrared spectra. WISE J040418.01+412735.6 is an L2 pec (red) dwarf, a member of the class of unusually red L dwarfs. We use follow-up optical and low-resolution near-infrared spectroscopy to classify a previously discovered (Castro & Gizis 2012) fifth object WISEP J060738.65+242953.4 as an (L8 Opt/L9 NIR), confirming it as an L dwarf at the L/T transition within 10 pc. WISEP J060738.65+242953.4 shows tentative CH_4 in the H band, possibly the result of unresolved binarity with an early T dwarf, a scenario not supported by binary spectral template fitting. If WISEP J060738.65+242953.4 is a single object, it represents the earliest onset of CH_4 in the H band of an L/T transition dwarf in the SpeX Library. As very late L dwarfs within 10 pc, WISE J140533.32+835030.5 and WISEP J060738.65+242953.4 will play a vital role in resolving outstanding issues at the L/T transition.Comment: 45 pages, 12 figures, accepted for publication in Ap

    Near Infrared Spectra and Intrinsic Luminosities of Candidate Type II Quasars at 2 < z < 3.4

    Full text link
    We present JHK near-infrared (NIR) spectroscopy of 25 candidate Type II quasars selected from the Sloan Digital Sky Survey, using Triplespec on the Apache Point Observatory 3.5m telescope, FIRE at the Magellan/Baade 6.5m telescope, and GNIRS on Gemini. At redshifts of 2 < z < 3.4, our NIR spectra probe the rest-frame optical region of these targets, which were initially selected to have strong lines of CIV and Ly alpha, with FWHM<2000 km/s from the SDSS pipeline. We use the [OIII]5007 line shape as a model for the narrow line region emission, and find that \halpha\ consistently requires a broad component with FWHMs ranging from 1000 to 7500 km/s. Interestingly, the CIV lines also require broad bases, but with considerably narrower widths of 1000 to 4500 km/s. Estimating the extinction using the Balmer decrement and also the relationship in lower-z quasars between rest equivalent width and luminosity in the [OIII] line, we find typical A_V values of 0-2 mag, which naturally explain the attenuated CIV lines relative to Halpha. We propose that our targets are moderately obscured quasars. We also describe one unusual object with three distinct velocity peaks in its [OIII] spectrum.Comment: Accepted for publication in ApJ, 18 pages, 14 figure

    Stellar and Molecular Gas Rotation in a Recently-Quenched Massive Galaxy at z~0.7

    Get PDF
    The process by which massive galaxies transition from blue, star-forming disks into red, quiescent galaxies remains one of the most poorly-understood aspects of galaxy evolution. In this investigation, we attempt to gain a better understanding of how star formation is quenched by focusing on a massive post-starburst galaxy at z = 0.747. The target has a high stellar mass and a molecular gas fraction of ~30% -- unusually high for its low star formation rate. We look for indicators of star formation suppression mechanisms in the stellar kinematics and age distribution of the galaxy obtained from spatially resolved Gemini Integral-Field spectra and in the gas kinematics obtained from ALMA. We find evidence of significant rotation in the stars, but we do not detect a stellar age gradient within 5 kpc. The molecular gas is aligned with the stellar component, and we see no evidence of strong gas outflows. Our target may represent the product of a merger-induced starburst or of morphological quenching; however, our results are not completely consistent with any of the prominent quenching models.Comment: 8 pages, 4 figures, resubmitting to ApJL after referee repor

    SDSS 0956+5128: A Broad-line Quasar with Extreme Velocity Offsets

    Get PDF
    We report on the discovery of a Type 1 quasar, SDSS 0956+5128, with a surprising combination of extreme velocity offsets. SDSS 0956+5128 is a broad-lined quasar exhibiting emission lines at three substantially different redshifts: a systemic redshift of z ~ 0.714 based on narrow emission lines, a broad MgII emission line centered 1200 km/s bluer than the systemic velocity, at z ~ 0.707, and broad H\alpha and H\beta emission lines centered at z ~ 0.690. The Balmer line peaks are 4100 km/s bluer than the systemic redshift. There are no previously known objects with such an extreme difference between broad MgII and broad Balmer emission. The two most promising explanations are either an extreme disk emitter or a high-velocity black hole recoil. However, neither explanation appears able to explain all of the observed features of SDSS 0956+5128, so the object may provide a challenge to our general understanding of quasar physics.Comment: ApJ, accepte

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    A large ground-based observing campaign of the disintegrating planet K2-22b

    Get PDF
    We present 45 ground-based photometric observations of the K2-22 system collected between 2016 December and 2017 May, which we use to investigate the evolution of the transit of the disintegrating planet K2-22b. Last observed in early 2015, in these new observations we recover the transit at multiple epochs and measure a typical depth of <1.5%. We find that the distribution of our measured transit depths is comparable to the range of depths measured in observations from 2014 and 2015. These new observations also support ongoing variability in the K2-22b transit shape and time, although the overall shallowness of the transit makes a detailed analysis of these transit parameters difficult. We find no strong evidence of wavelength-dependent transit depths for epochs where we have simultaneous coverage at multiple wavelengths, although our stacked Las Cumbres Observatory data collected over days-to-months timescales are suggestive of a deeper transit at blue wavelengths. We encourage continued high-precision photometric and spectroscopic monitoring of this system in order to further constrain the evolution timescale and to aid comparative studies with the other few known disintegrating planets

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra. \ua9 2015. The American Astronomical Society
    corecore