230 research outputs found

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF

    Measurement of differential cross sections for Z bosons produced in association with charm jets in pp collisions at √s = 13 TeV

    Get PDF

    Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at √s = 13 TeV

    Get PDF

    Search for MSSM Higgs bosons decaying to μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF

    Pileup mitigation at CMS in 13 TeV data

    Get PDF
    With increasing instantaneous luminosity at the LHC come additional reconstruction challenges. At high luminosity, many collisions occur simultaneously within one proton-proton bunch crossing. The isolation of an interesting collision from the additional "pileup" collisions is needed for effective physics performance. In the CMS Collaboration, several techniques capable of mitigating the impact of these pileup collisions have been developed. Such methods include charged-hadron subtraction, pileup jet identification, isospin-based neutral particle "δβ" correction, and, most recently, pileup per particle identification. This paper surveys the performance of these techniques for jet and missing transverse momentum reconstruction, as well as muon isolation. The analysis makes use of data corresponding to 35.9 fb1^{-1} collected with the CMS experiment in 2016 at a center-of-mass energy of 13 TeV. The performance of each algorithm is discussed for up to 70 simultaneous collisions per bunch crossing. Significant improvements are found in the identification of pileup jets, the jet energy, mass, and angular resolution, missing transverse momentum resolution, and muon isolation when using pileup per particle identification

    Observation of nuclear modifications in W±^{±} boson production in pPb collisions at √S^{S}NN = 8.16 TeV

    Get PDF

    Search for Higgs and Z boson decays to J/ψ or Y pairs in the four-muon final state in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Measurement of angular parameters from the decay B⁰  → K0^{⁎0} μ⁺ μ⁻ in proton–proton collisions at √s 8 TeV

    Get PDF
    Angular distributions of the decay B⁰  → K0^{⁎0} μ⁺ μ⁻ are studied using a sample of proton–proton collisions at √s=8TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 20.5fb⁻¹ . An angular analysis is performed to determine the P₁ and P2˘7^{\u27}₅ parameters, where the P2˘7^{\u27}₅ parameter is of particular interest because of recent measurements that indicate a potential discrepancy with the standard model predictions. Based on a sample of 1397 signal events, the P₁ and P2˘7^{\u27}₅ parameters are determined as a function of the dimuon invariant mass squared. The measurements are in agreement with predictions based on the standard model
    corecore