199 research outputs found
Ferromagnetic order in U(Rh,Co)Ge
We report the variation of ferromagnetic order in the pseudo-ternary
compounds URh_{1-x}Co_{x}Ge (0 \leq x \leq 1). Magnetization and transport data
taken on polycrystalline samples show that the Curie temperature T_{C}
gradually increases with increasing Co content from a value of 9.5 K for URhGe
to a maximum value of 20 K for x = 0.6 and then steadily decreases to 3 K for
UCoGe. The magnetic interaction strength varies smoothly across the series. For
all samples the electrical resistivity for T < T_{C} follows the behaviour \rho
= \rho_{0} + AT^2. The A coefficient is dominated by scattering at spin waves
and is strongly enhanced for x = 0 and 1.Comment: 12 pages (4 figures), submitted to SS
Linking the trans-Planckian and the information loss problems in black hole physics
The trans-Planckian and information loss problems are usually discussed in
the literature as separate issues concerning the nature of Hawking radiation.
Here we instead argue that they are intimately linked, and can be understood as
"two sides of the same coin" once it is accepted that general relativity is an
effective field theory.Comment: 10 pages, 2 figures. Replaced with the version to be published in
General Relativity and Gravitatio
Recommended from our members
Advancing the defensive explanation for anxiety disorders: lorazepam effects on human defense are systematically modulated by personality and threat-type
Clinically effective drugs against human anxiety and fear systematically alter the innate defensive behavior of rodents, suggesting that in humans these emotions reflect defensive adaptations. Compelling experimental human evidence for this theory is yet to be obtained. We report the clearest test to date by investigating the effects of 1 and 2mg of the anti-anxiety drug lorazepam on the intensity of threat-avoidance behavior in 40 healthy adult volunteers (20 females). We found lorazepam modulated the intensity of participantsâ threat-avoidance behavior in a dose-dependent manner. However, the pattern of effects depended upon two factors: type of threat-avoidance behavior and theoretically relevant measures of personality. In the case of flight behavior (one-way active avoidance), lorazepam increased intensity in low scorers on the Fear Survey Schedule tissuedamage fear but reduced it in high scorers. Conversely, in the case of risk-assessment behavior (two-way active avoidance), lorazepam reduced intensity in low scorers on the Spielberger trait anxiety but increased it in high scorers. Anti-anxiety drugs do not systematically affect rodent flight behavior; therefore, we interpret this new finding as suggesting that lorazepam has a broader effect on defense in humans than in rodents, perhaps by modulating general perceptions of threat intensity. The different patterning of lorazepam effects on the two behaviors implies that human perceptions of threat intensity are nevertheless distributed across two different neural streams, which influence effects observed on one-way or two-way active avoidance demanded by the situation
Brane Big-Bang Brought by Bulk Bubble
We propose an alternative inflationary universe scenario in the context of
Randall-Sundrum braneworld cosmology. In this new scenario the existence of
extra-dimension(s) plays an essential role. First, the brane universe is
initially in the inflationary phase driven by the effective cosmological
constant induced by small mismatch between the vacuum energy in the
5-dimensional bulk and the brane tension. This mismatch arises since the bulk
is initially in a false vacuum. Then, the false vacuum decay occurs, nucleating
a true vacuum bubble with negative energy inside the bulk. The nucleated bubble
expands in the bulk and consequently hits the brane, bringing a hot big-bang
brane universe of the Randall-Sundrum type. Here, the termination of the
inflationary phase is due to the change of the bulk vacuum energy. The bubble
kinetic energy heats up the universe. As a simple realization, we propose a
model, in which we assume an interaction between the brane and the bubble. We
derive the constraints on the model parameters taking into account the
following requirements: solving the flatness problem, no force which prohibits
the bubble from colliding with the brane, sufficiently high reheating
temperature for the standard nucleosynthesis to work, and the recovery of
Newton's law up to 1mm. We find that a fine tuning is needed in order to
satisfy the first and the second requirements simultaneously, although, the
other constraints are satisfied in a wide range of the model parameters.Comment: 20pages, 5figures, some references added, the previous manuscript has
been largely improve
Inflation and Braneworlds: Degeneracies and Consistencies
Scalar and tensor perturbations arising in an inflationary braneworld
scenario driven by a single scalar field are considered, where the bulk on
either side of the brane corresponds to Anti-de Sitter spaces with different
cosmological constants. A consistency relation between the two spectra is
derived and found to have an identical form to that arising in standard
single-field inflation based on conventional Einstein gravity. The dS/CFT
correspondence may provide further insight into the origin of this degeneracy.
Possible ways of lifting such a degeneracy are discussed.Comment: 10 page
A bacterial genome in transition - an exceptional enrichment of IS elements but lack of evidence for recent transposition in the symbiont Amoebophilus asiaticus
<p>Abstract</p> <p>Background</p> <p>Insertion sequence (IS) elements are important mediators of genome plasticity and are widespread among bacterial and archaeal genomes. The 1.88 Mbp genome of the obligate intracellular amoeba symbiont <it>Amoebophilus asiaticus </it>contains an unusually large number of transposase genes (n = 354; 23% of all genes).</p> <p>Results</p> <p>The transposase genes in the <it>A. asiaticus </it>genome can be assigned to 16 different IS elements termed ISCaa1 to ISCaa16, which are represented by 2 to 24 full-length copies, respectively. Despite this high IS element load, the <it>A. asiaticus </it>genome displays a GC skew pattern typical for most bacterial genomes, indicating that no major rearrangements have occurred recently. Additionally, the high sequence divergence of some IS elements, the high number of truncated IS element copies (n = 143), as well as the absence of direct repeats in most IS elements suggest that the IS elements of <it>A. asiaticus </it>are transpositionally inactive. Although we could show transcription of 13 IS elements, we did not find experimental evidence for transpositional activity, corroborating our results from sequence analyses. However, we detected contiguous transcripts between IS elements and their downstream genes at nine loci in the <it>A. asiaticus </it>genome, indicating that some IS elements influence the transcription of downstream genes, some of which might be important for host cell interaction.</p> <p>Conclusions</p> <p>Taken together, the IS elements in the <it>A. asiaticus </it>genome are currently in the process of degradation and largely represent reflections of the evolutionary past of <it>A. asiaticus </it>in which its genome was shaped by their activity.</p
The Inflationary Energy Scale in Braneworld Cosmology
Upper bounds on the energy scale at the end of inflation in the
Randall-Sundrum type II braneworld scenario are derived. The analysis is made
exact by introducing new parameters that represent extensions of the Hubble
flow parameters. Only very weak assumptions about the form of the inflaton
potential are made. In the high energy and slow roll regime the bounds depend
on the amplitude of gravitational waves produced during inflation and become
stronger as this amplitude increases.Comment: 10 pages, 3 figure
Recommended from our members
Effects of lorazepam on saccadic eye movements: the role of sex, task characteristics and baseline traits
Medical Research Council; National Institute for Health Research; Mental Health Biomedical Research Centre at South London; Maudsley NHS Foundation Trust; Institute of Psychiatry, Psychology; Neuroscience, Kingâs College London
Movements of marine fish and decapod crustaceans: Process, theory and application
Many marine species have a multi-phase ontogeny, with each phase usually associated with a spatially and temporally discrete set of movements. For many fish and decapod crustaceans that live inshore, a tri-phasic life cycle is widespread, involving: (1) the movement of planktonic eggs and larvae to nursery areas; (2) a range of routine shelter and foraging movements that maintain a home range; and (3) spawning migrations away from the home range to close the life cycle. Additional complexity is found in migrations that are not for the purpose of spawning and movements that result in a relocation of the home range of an individual that cannot be defined as an ontogenetic shift. Tracking and tagging studies confirm that life cycle movements occur across a wide range of spatial and temporal scales. This dynamic multi-scale complexity presents a significant problem in selecting appropriate scales for studying highly mobile marine animals. We address this problem by first comprehensively reviewing the movement patterns of fish and decapod crustaceans that use inshore areas and present a synthesis of life cycle strategies, together with five categories of movement. We then examine the scale-related limitations of traditional approaches to studies of animal-environment relationships. We demonstrate that studies of marine animals have rarely been undertaken at scales appropriate to the way animals use their environment and argue that future studies must incorporate animal movement into the design of sampling strategies. A major limitation of many studies is that they have focused on: (1) a single scale for animals that respond to their environment at multiple scales or (2) a single habitat type for animals that use multiple habitat types. We develop a hierarchical conceptual framework that deals with the problem of scale and environmental heterogeneity and we offer a new definition of 'habitat' from an organism-based perspective. To demonstrate that the conceptual framework can be applied, we explore the range of tools that are currently available for both measuring animal movement patterns and for mapping and quantifying marine environments at multiple scales. The application of a hierarchical approach, together with the coordinated integration of spatial technologies offers an unprecedented opportunity for researchers to tackle a range of animal-environment questions for highly mobile marine animals. Without scale-explicit information on animal movements many marine conservation and resource management strategies are less likely to achieve their primary objectives
- âŠ