104 research outputs found

    Use of Lagrangian simulations to hindcast the geographical position of propagule release zones in a Mediterranean coastal fish

    Get PDF
    The study of organism dispersal is fundamental for elucidating patterns of connectivity between populations, thus crucial for the design of effective protection and management strategies. This is especially challenging in the case of coastal fish, for which information on egg release zones (i.e. spawning grounds) is often lacking. Here we assessed the putative location of egg release zones of the saddled sea bream (Oblada melanura) along the south-eastern coast of Spain in 2013. To this aim, we hindcasted propagule (egg and larva) dispersal using Lagrangian simulations, fed with species-specific information on early life history traits (ELTs), with two approaches: 1) back-tracking and 2) comparing settler distribution obtained from simulations to the analogous distribution resulting from otolith chemical analysis. Simulations were also used to assess which factors contributed the most to dispersal distances. Back-tracking simulations indicated that both the northern sector of the Murcia region and some traits of the North-African coast were hydrodynamically suitable to generate and drive the supply of larvae recorded along the coast of Murcia in 2013. With the second approach, based on the correlation between simulation outputs and field results (otolith chemical analysis), we found that the oceanographic characteristics of the study area could have determined the pattern of settler distribution recorded with otolith analysis in 2013 and inferred the geographical position of main O. melanura spawning grounds along the coast. Dispersal distance was found to be significantly affected by the geographical position of propagule release zones. The combination of methods used was the first attempt to assess the geographical position of propagule release zones in the Mediterranean Sea for O. melanura, and can represent a valuable approach for elucidating dispersal and connectivity patterns in other coastal species

    Spatial genetic structure in the saddled sea bream (Oblada melanura [Linnaeus, 1758]) suggests multi-scaled patterns of connectivity between protected and unprotected areas in the Western Mediterranean Sea

    Get PDF
    Marine protected areas (MPAs) and networks of MPAs are advocated worldwide for the achievement of marine conservation objectives. Although the knowledge about population connectivity is considered fundamental for the optimal design of MPAs and networks, the amount of information available for the Mediterranean Sea is currently scarce. We investigated the genetic structure of the saddled sea bream ( Oblada melanura) and the level of genetic connectivity between protected and unprotected locations, using a set of 11 microsatellite loci. Spatial patterns of population differentiation were assessed locally (50-100 km) and regionally (500-1000 km), considering three MPAs of the Western Mediterranean Sea. All values of genetic differentiation between locations (Fst and Jost's D) were non-significant after Bonferroni correction, indicating that, at a relatively small spatial scale, protected locations were in general well connected with non-protected ones. On the other hand, at the regional scale, discriminant analysis of principal components revealed the presence of a subtle pattern of genetic heterogeneity that reflects the geography and the main oceanographic features (currents and barriers) of the study area. This genetic pattern could be a consequence of different processes acting at different spatial and temporal scales among which the presence of admixed populations, large population sizes and species dispersal capacity, could play a major role. These outcomes can have important implications for the conservation biology and fishery management of the saddled sea bream and provide useful information for genetic population studies of other coastal fishes in the Western Mediterranean Sea

    CONTRIBUCIÓN AL CONOCIMIENTO DE LA ICTIOFAUNA BENTÓNICA DEL MAR MENOR (SE ESPANA) Y SU DISTRIBUCIÓN BIONÓMICA

    Get PDF
    Twenty-one fish species belonging to seven families have been sampled in the Mar Menor, an hyperharine coastal lagoon. The more abundant preferential species are: Gobius cobiris and Blennius pavo, on shallow infralittoral rock; Pomaroschisrus microps, Callionymus risso and Solea vulgaris, on shell fine sands; Syngnarhus abaster, Hippocampus ramulosus. Gobius niger and Millerigobius macrocephalus, on Cymodocea-Caulerpa beds. The enlargement of one of the sea openings (El Estacio) is producing changes in the Mar Menor ecosystem. These changes are commented at benthic ichthyofauna level.Se han recolectado veintiuna especies de peces pertenecientes a siete familias. Las especies preferenciales más abundantes han sido: Gobius cobiris y Blennius pavo, en la roca infralitoral, horizonte superficial; Pomaroschisrus microps, Callionymus risso y Solea vulgaris, en las arenas finas conchíferas; Syngnathus abasrer, Hippocampus ramulosus, Gobius niger y Millerigobius macrocephalus, en la pradera de Cymodocea-Caulerpa. La ampliación de una de las comunicaciones con el mar exterior (El Estacio) está produciendo cambios en la hiota del Mar Menor. Estos cambios se comentan a nivel de la ictiofauna bentónica

    El arte del color: colorantes naturales, tintes y pigmentos laca

    Get PDF
    El objetivo general del proyecto propuesto ha sido desarrollar una metodología que sirva de apoyo a las prácticas de laboratorio realizadas por los alumnos para las asignaturas que integran en sus competencias el estudio de tintes, pigmentos lacas y métodos extracción de colorantes y de tinción. Basándose en la relación que existe entre los fenómenos físicos y químicos implicados en los métodos desarrollados con la obtención del pigmento laca y tinte. Además del estudio de la influencia de diferentes elementos como mordientes, soportes inorgánicos y variables como el pH y la T

    Water level fluctuations in a coastal lagoon: El Yali Ramsar wetland, Chile

    Get PDF
    El Yali coastal reserve is the most important wetland complex in Mediterranean climate central Chile, especially due to the native and foreign bird fauna which arrives here periodically. The coastal lagoon, part of a microtidal estuary (1.2m tidal range), is a shallow (< 1m depth) dynamic system and unique site of coexistence of northern halophyte and southern palustrian riparian vegetation. This study identifies and quantifies the effect of forcing variables in the lagoon water level over 1 year of data collection. Transects of piezometers with level sensors were installed between the coastal lagoon and the sea. Monthly water quality data were collected. During the winter rainy season, the lagoon connects with the sea via an ephemeral tidal inlet, producing noticeable daily variations in the water level, up to 80-cm depending on the tides. In contrast, during the season when bar closure of the inlet disconnects the lagoon from the sea, the lagoon level is very stable and only decreases very slowly due to evaporation, which also makes the system hypersaline. During the connection phase, analyses using general pattern, spectral and Fourier analysis of the sea-vs. lagoon-level signals show that two temporal scale hierarchies are relevant: monthly (due to moon cycles) and daily (due to tidal cycles every 12.5 and 24.2-h). A simple diffusion numerical model simulated the water table trends well for the sand bar between the lagoon and the sea, supporting the main effect of the sea level on the lagoon water levels

    Assessing, quantifying and valuing the ecosystem services of coastal lagoons

    Get PDF
    The natural conservation of coastal lagoons is important not only for their ecological importance, but also because of the valuable ecosystem services they provide for human welfare and wellbeing. Coastal lagoons are shallow semi-enclosed systems that support important habitats such as wetlands, mangroves, salt-marshes and seagrass meadows, as well as a rich biodiversity. Coastal lagoons are also complex social-ecological systems with ecosystem services that provide livelihoods, wellbeing and welfare to humans. This study assessed, quantified and valued the ecosystem services of 32 coastal lagoons. The main findings of the study are: (i) the definitions of ecosystem services are still not generally accepted; (ii) the quantification of ecosystem services is made in many different ways, using different units; (iii) the evaluation in monetary terms of some ecosystem service is problematic, often relying on non-monetary evaluation methods; (iv) when ecosystem services are valued in monetary terms, this may represent very different human benefits; and, (v) different aspects of climate change, including increasing temperature, sea-level rise and changes in rainfall patterns threaten the valuable ecosystem services of coastal lagoons.DEVOTES project, from the European Union's Seventh Framework Programme for research, technological development and demonstration [308392]; networks and communities of Eurolag; Future Earth Coasts; SCOR; Fundacao para a Ciencia e a Tecnologia (FCT) Investigador Programme [IF/00331/2013]; Fundacao para a Ciencia e a Tecnologia [UID/MAR/04292/2013]; CESAM by FCT/MEC national funds (PIDDAC) [UID/AMB/50017/2013 - POCI-01-0145-FEDER-007638]; FEDER; European Commission, under the 7th Framework Programme through the collaborative research project LAGOONS [283157]; FCT [SFRH/BPD/107823/2015, SFRH/BPD/91494/2012

    Restricted dispersal in a sea of gene flow

    Get PDF
    Howfar domarine larvae disperse in the ocean? Decades of population genetic studies have revealed generally low levels of genetic structure at large spatial scales (hundreds of kilometres). Yet this result, typically based on discrete sampling designs, does not necessarily imply extensive dispersal. Here, we adopt a continuous sampling strategy along 950 km of coast in the northwestern Mediterranean Sea to address this question in four species. In line with expectations, we observe weak genetic structure at a large spatial scale. Nevertheless, our continuous sampling strategy uncovers a pattern of isolation by distance at small spatial scales (few tens of kilometres) in two species. Individual- based simulations indicate that this signal is an expected signature of restricted dispersal. At the other extreme of the connectivity spectrum, two pairs of individuals that are closely related genetically were found more than 290 km apart, indicating long-distance dispersal. Such a combination of restricted dispersal with rare long-distance dispersal events is supported by a high-resolution biophysical model of larval dispersal in the study area, and we posit that it may be common in marine species. Our results bridge population genetic studies with direct dispersal studies and have implications for the design of marine reserve networksVersión del edito

    Conservation physiology of marine fishes: state of the art and prospects for policy

    Get PDF
    The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.EU COST Action FA1004 Conservation Physiology of Marine Fishesinfo:eu-repo/semantics/publishedVersio
    corecore