307 research outputs found

    Development of Clostridium difficile R20291ΔPaLoc model strains and in vitro methodologies reveals CdtR is required for the production of CDT to cytotoxic levels

    Get PDF
    Assessing the regulation of Clostridium difficile transferase (CDT), is complicated by the presence of a Pathogenicity locus (PaLoc) which encodes Toxins A and B. Here we developed R20291ΔPaLoc model strains and cell-based assays to quantify CDT-mediated virulence. Their application demonstrated that the transcriptional regulator, CdtR, was required for CDT-mediated cytotoxicity

    Functional significance of active site residues in the enzymatic component of the Clostridium difficile binary toxin

    Get PDF
    © 2016 Clostridium difficile binary toxin (CDT) is an ADP-ribosyltransferase which is linked to enhanced pathogenesis of C. difficile strains. CDT has dual function: domain a (CDTa) catalyses the ADP-ribosylation of actin (enzymatic component), whereas domain b (CDTb) transports CDTa into the cytosol (transport component). Understanding the molecular mechanism of CDT is necessary to assess its role in C. difficile infection. Identifying amino acids that are essential to CDTa function may aid drug inhibitor design to control the severity of C. difficile infections. Here we report mutations of key catalytic residues within CDTa and their effect on CDT cytotoxicity. Rather than an all-or-nothing response, activity of CDTa mutants vary with the type of amino acid substitution; S345A retains cytotoxicity whereas S345Y was sufficient to render CDT non-cytotoxic. Thus CDTa cytotoxicity levels are directly linked to ADP-ribosyltransferase activity

    Characteristics of Lipo-Oligosaccharide Loci of Campylobacter jejuni Isolates Associated with Guillain-Barré Syndrome from Hebei, China

    Get PDF
    Ganglioside mimicry by C.jejuni lipo-oligosaccharides (LOS) could induce the production of autoantibodies against gangliosides and the development of Guillain-Barré syndrome (GBS). The LOS biosynthesis region exhibits significant variation with different strains. Using PCR amplifications of genes from published LOS loci and sequencing the LOS biosynthesis loci, the eight GBS-associated C. jejuni strains from HeBei could be classified into four classes. The expression of sialylated LOS structures (class A) or non-sialylated LOS structures(class F, H and P) in the C. jejuni LOS is considered to be two different factors for the induction of GBS

    Towards a Pathogenic Escherichia coli Detection Platform Using Multiplex SYBR®Green Real-Time PCR Methods and High Resolution Melting Analysis

    Get PDF
    Escherichia coli is a group of bacteria which has raised a lot of safety concerns in recent years. Five major intestinal pathogenic groups have been recognized amongst which the verocytotoxin or shiga-toxin (stx1 and/or stx2) producing E. coli (VTEC or STEC respectively) have received a lot of attention recently. Indeed, due to the high number of outbreaks related to VTEC strains, the European Food Safety Authority (EFSA) has requested the monitoring of the “top-five” serogroups (O26, O103, O111, O145 and O157) most often encountered in food borne diseases and addressed the need for validated VTEC detection methods. Here we report the development of a set of intercalating dye Real-time PCR methods capable of rapidly detecting the presence of the toxin genes together with intimin (eae) in the case of VTEC, or aggregative protein (aggR), in the case of the O104:H4 strain responsible for the outbreak in Germany in 2011. All reactions were optimized to perform at the same annealing temperature permitting the multiplex application in order to minimize the need of material and to allow for high-throughput analysis. In addition, High Resolution Melting (HRM) analysis allowing the discrimination among strains possessing similar virulence traits was established. The development, application to food samples and the flexibility in use of the methods are thoroughly discussed. Together, these Real-time PCR methods facilitate the detection of VTEC in a new highly efficient way and could represent the basis for developing a simple pathogenic E. coli platform

    Sequence-based typing of genetic targets encoded outside of the O-antigen gene cluster is indicative of Shiga toxin-producing Escherichia coli serogroup lineages

    Get PDF
    Serogroup classifications based upon the O-somatic antigen of Shiga toxin-producing Escherichia coli (STEC) provide significant epidemiological information on clinical isolates. Each O-antigen determinant is encoded by a unique cluster of genes present between the gnd and galF chromosomal genes. Alternatively, serogroup-specific polymorphisms might be encoded in loci that are encoded outside of the O-antigen gene cluster. Segments of the core bacterial loci mdh, gnd, gcl, ppk, metA, ftsZ, relA and metG for 30 O26 STEC strains have previously been sequenced, and comparative analyses to O157 distinguished these two serogroups. To screen these loci for serogroup-specific traits within a broader range of clinically significant serogroups, DNA sequences were obtained for 19 strains of 10 additional STEC serogroups. Unique alleles were observed at the gnd locus for each examined STEC serogroup, and this correlation persisted when comparative analyses were extended to 144 gnd sequences from 26 O-serogroups (comprising 42 O : H-serotypes). These included O157, O121, O103, O26, O5 : non-motile (NM), O145 : NM, O113 : H21, O111 : NM and O117 : H7 STEC; and furthermore, non-toxin encoding O157, O26, O55, O6 and O117 strains encoded distinct gnd alleles compared to STEC strains of the same serogroup. DNA sequencing of a 643 bp region of gnd was, therefore, sufficient to minimally determine the O-antigen of STEC through molecular means, and the location of gnd next to the O-antigen gene cluster offered additional support for the co-inheritance of these determinants. The gnd DNA sequence-based serogrouping method could improve the typing capabilities for STEC in clinical laboratories, and was used successfully to characterize O121 : H19, O26 : H11 and O177 : NM clinical isolates prior to serological confirmation during outbreak investigations

    Nanolitre real-time PCR detection of bacterial, parasitic, and viral agents from patients with diarrhoea in Nunavut, Canada

    Get PDF
    Background. Little is known about the microbiology of diarrhoeal disease in Canada's Arctic regions. There are a number of limitations of conventional microbiology testing techniques for diarrhoeal pathogens, and these may be further compromised in the Arctic, given the often long distances for specimen transport. Objective. To develop a novel multiple-target nanolitre real-time reverse transcriptase (RT)-PCR platform to simultaneously test diarrhoeal specimens collected from residents of the Qikiqtani (Baffin Island) Region of Nunavut, Canada, for a wide range of bacterial, parasitic and viral agents. Study design/methods. Diarrhoeal stool samples submitted for bacterial culture to Qikiqtani General Hospital in Nunavut over an 18-month period were tested with a multiple-target nanolitre real-time PCR panel for major diarrhoeal pathogens including 8 bacterial, 6 viral and 2 parasitic targets. Results. Among 86 stool specimens tested by PCR, a total of 50 pathogens were detected with 1 or more pathogens found in 40 (46.5%) stool specimens. The organisms detected comprised 17 Cryptosporidium spp., 5 Clostridium difficile with toxin B, 6 Campylobacter spp., 6 Salmonella spp., 4 astroviruses, 3 noroviruses, 1 rotavirus, 1 Shigella spp. and 1 Giardia spp. The frequency of detection by PCR and bacterial culture was similar for Salmonella spp., but discrepant for Campylobacter spp., as Campylobacter was detected by culture from only 1/86 specimens. Similarly, Cryptosporidium spp. was detected in multiple samples by PCR but was not detected by microscopy or enzyme immunoassay. Conclusions. Cryptosporidium spp., Campylobacter spp. and Clostridium difficile may be relatively common but possibly under-recognised pathogens in this region. Further study is needed to determine the regional epidemiology and clinical significance of these organisms. This method appears to be a useful tool for gastrointestinal pathogen research and may also be helpful for clinical diagnostics and outbreak investigation in remote regions where the yield of routine testing may be compromised

    Structured bimanual actions and hand transfers reveal population-level right-handedness in captive gorillas

    Get PDF
    There is a common prevailing perception that humans possess a species-unique population-level right-hand bias that has evolutionary links with language. New theories suggest that an early evolutionary division of cognitive function gave rise to a left-hemisphere bias for behaviours underpinned by structured sequences of actions. However, studies of great ape handedness have generated inconsistent results and considerable debate. Additionally, the literature places a heavy focus on chimpanzees, revealing a paucity of handedness findings from other great ape species, and thus limiting the empirical evidence with which we can evaluate evolutionary theory. We observed handedness during spontaneous naturalistic bimanual actions in a captive, biological group of 13 western lowland gorillas, Gorilla gorilla gorilla. Our results demonstrated a significant group-level right-handed bias for bimanual actions as well as for a novel measure of handedness: hand transfer. The two measures revealed similar patterns of handedness, such that a right-hand bias for the majority of individuals was found across both measures. Our findings suggest that human population-level right-handedness is a behavioural trait linked with left-hemisphere dominance for the processing of structured sequences of actions, and was inherited by a common ancestor of both humans and apes

    Chimpanzee (Pan troglodytes) Precentral Corticospinal System Asymmetry and Handedness: A Diffusion Magnetic Resonance Imaging Study

    Get PDF
    Most humans are right handed, and most humans exhibit left-right asymmetries of the precentral corticospinal system. Recent studies indicate that chimpanzees also show a population-level right-handed bias, although it is less strong than in humans.We used in vivo diffusion-weighted and T1-weighted magnetic resonance imaging (MRI) to study the relationship between the corticospinal tract (CST) and handedness in 36 adult female chimpanzees. Chimpanzees exhibited a hemispheric bias in fractional anisotropy (FA, left>right) and mean diffusivity (MD, right>left) of the CST, and the left CST was centered more posteriorly than the right. Handedness correlated with central sulcus depth, but not with FA or MD.These anatomical results are qualitatively similar to those reported in humans, despite the differences in handedness. The existence of a left>right FA, right>left MD bias in the corticospinal tract that does not correlate with handedness, a result also reported in some human studies, suggests that at least some of the structural asymmetries of the corticospinal system are not exclusively related to laterality of hand preference
    corecore