68 research outputs found

    Autoradiographic Mapping of 5-HT1B/1D Binding Sites in the Rhesus Monkey Brain Using [carbonyl-11C]zolmitriptan

    Get PDF
    Zolmitriptan is a serotonin 5-HT1B/1D receptor agonist that is an effective and well-tolerated drug for migraine treatment. In a human positron emission tomography study, [11C]zolmitriptan crossed the blood-brain barrier but no clear pattern of regional uptake was discernable. The objective of this study was to map the binding of [11C]zolmitriptan in Rhesus monkey brain using whole hemisphere in vitro autoradiography with [11C]zolmitriptan as a radioligand. In saturation studies, [11C]zolmitriptan showed specific (90%) binding to a population of high-affinity binding sites (Kd 0.95–5.06 nM). There was regional distribution of binding sites with the highest density in the ventral pallidum, followed by the external globus pallidus, substantia nigra, visual cortex, and nucleus accumbens. In competitive binding studies with 5-HT1 receptor antagonists, [11C]zolmitriptan binding was blocked by selective 5-HT1B and 5-HT1D ligands in all target areas. There was no appreciable change in binding with the addition of a 5-HT1A receptor antagonist

    Fast Alpha Activity in EEG of Patients With Alzheimer's Disease Is Paralleled by Changes in Cognition and Cholinergic Markers During Encapsulated Cell Biodelivery of Nerve Growth Factor.

    Get PDF
    Background Basal forebrain cholinergic neurons are dependent on nerve growth factor (NGF) for growth and survival and these cells are among the first to degenerate in Alzheimer's disease (AD). Targeted delivery of NGF has been suggested as a potential therapy for AD. This hypothesis was tested in a clinical trial with encapsulated cell biodelivery of NGF (NGF-ECB) in AD patients. Three of six patients showed improved biomarkers for cognition by the end of the study. Here, we report on the effects of targeted delivery of NGF on human resting EEG. Materials and methods NGF-ECB implants were implanted bilaterally in the basal forebrain of six AD patients for 12 months. EEG recordings and quantitative analysis were performed at baseline, 3 and 12 months of NGF delivery, and analyzed for correlation with changes in Mini-mental state examination (MMSE) and levels of the cholinergic marker choline acetyltransferase (ChAT) in cerebrospinal fluid (CSF). Results We found significant correlations between the topographic variance of EEG spectral power at the three study points (baseline, 3 and 12 months) and changes in MMSE and CSF ChAT. This possible effect of NGF was identified in a narrow window of alpha frequency 10-11.5 Hz, where a stabilization in MMSE score during treatment was related to an increase in EEG alpha power. A similar relation was observed between the alpha power and ChAT. More theta power at 6.5 Hz was on the contrary associated with a decrease in CSF ChAT during the trial period. Conclusion In this exploratory study, there was a positive correlative pattern between physiological high-frequency alpha activity and stabilization in MMSE and increase in CSF ChAT in AD patients receiving targeted delivery of NGF to the cholinergic basal forebrain

    Outreach initiatives operated by universities for increasing interest in science and technology

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in European Journal of Engineering Edutaion on 2016, available online: http://www.tandfonline.com/10.1080/03043797.2015.1121468Since the 1990s, the low number of students choosing to study science and technology in higher education has been on the societal agenda and many initiatives have been launched to promote awareness regarding career options. The initiatives particularly focus on increasing enrolment in the engineering programmes. This article describes and compares eight European initiatives that have been established and operated by universities (and in some cases through collaboration with other actors in society). Each initiative is summarised in a short essay that discusses motivation, organisation, pedagogical approach, and activities. The initiatives are characterised by comparing the driving forces behind their creation, how the initiative activities relate to the activities at the university, size based on the number of participants and cost per participant and pedagogical framework. There seem to be two main tracks for building outreach activities, one where outreach activities are based on the university’s normal activities, and one where outreach activities are designed specifically for the visiting students.Gumaelius, L.; Almqvistb, M.; Arnadottir, A.; Axelsson, A.; Conejero, JA.; García Sabater, JP.; Klitgaard, L.... (2016). Outreach initiatives operated by universities for increasing interest in science and technology. European Journal of Engineering Education. 41(6):589-622. https://doi.org/10.1080/03043797.2015.1121468S58962241

    Intraputamenal cerebral dopamine neurotrophic factor in Parkinson's disease: a randomized, double‐blind, multicenter phase 1 trial

    Get PDF
    Background: Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that protects dopamine neurons and improves motor function in animal models of Parkinson's disease (PD). Objective: The primary objectives of this study were to assess the safety and tolerability of both CDNF and the drug delivery system (DDS) in patients with PD of moderate severity. Methods: We assessed the safety and tolerability of monthly intraputamenal CDNF infusions in patients with PD using an investigational DDS, a bone‐anchored transcutaneous port connected to four catheters. This phase 1 trial was divided into a placebo‐controlled, double‐blind, 6‐month main study followed by an active‐treatment 6‐month extension. Eligible patients, aged 35 to 75 years, had moderate idiopathic PD for 5 to 15 years and Hoehn and Yahr score ≤ 3 (off state). Seventeen patients were randomized to placebo (n = 6), 0.4 mg CDNF (n = 6), or 1.2 mg CDNF (n = 5). The primary endpoints were safety and tolerability of CDNF and DDS and catheter implantation accuracy. Secondary endpoints were measures of PD symptoms, including Unified Parkinson's Disease Rating Scale, and DDS patency and port stability. Exploratory endpoints included motor symptom assessment (PKG, Global Kinetics Pty Ltd, Melbourne, Australia) and positron emission tomography using dopamine transporter radioligand [18F]FE‐PE2I. Results: Drug‐related adverse events were mild to moderate with no difference between placebo and treatment groups. No severe adverse events were associated with the drug, and device delivery accuracy met specification. The severe adverse events recorded were associated with the infusion procedure and did not reoccur after procedural modification. There were no significant changes between placebo and CDNF treatment groups in secondary endpoints between baseline and the end of the main and extension studies. Conclusions: Intraputamenally administered CDNF was safe and well tolerated, and possible signs of biological response to the drug were observed in individual patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Changing genetic architecture of body mass index from infancy to early adulthood : an individual based pooled analysis of 25 twin cohorts

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Body mass index (BMI) shows strong continuity over childhood and adolescence and high childhood BMI is the strongest predictor of adult obesity. Genetic factors strongly contribute to this continuity, but it is still poorly known how their contribution changes over childhood and adolescence. Thus, we used the genetic twin design to estimate the genetic correlations of BMI from infancy to adulthood and compared them to the genetic correlations of height. Methods: We pooled individual level data from 25 longitudinal twin cohorts including 38,530 complete twin pairs and having 283,766 longitudinal height and weight measures. The data were analyzed using Cholesky decomposition offering genetic and environmental correlations of BMI and height between all age combinations from 1 to 19 years of age. Results: The genetic correlations of BMI and height were stronger than the trait correlations. For BMI, we found that genetic correlations decreased as the age between the assessments increased, a trend that was especially visible from early to middle childhood. In contrast, for height, the genetic correlations were strong between all ages. Age-to-age correlations between environmental factors shared by co-twins were found for BMI in early childhood but disappeared altogether by middle childhood. For height, shared environmental correlations persisted from infancy to adulthood. Conclusions: Our results suggest that the genes affecting BMI change over childhood and adolescence leading to decreasing age-to-age genetic correlations. This change is especially visible from early to middle childhood indicating that new genetic factors start to affect BMI in middle childhood. Identifying mediating pathways of these genetic factors can open possibilities for interventions, especially for those children with high genetic predisposition to adult obesity.Peer reviewe

    Changing genetic architecture of body mass index from infancy to early adulthood: an individual based pooled analysis of 25 twin cohorts

    Get PDF
    BACKGROUND: Body mass index (BMI) shows strong continuity over childhood and adolescence and high childhood BMI is the strongest predictor of adult obesity. Genetic factors strongly contribute to this continuity, but it is still poorly known how their contribution changes over childhood and adolescence. Thus, we used the genetic twin design to estimate the genetic correlations of BMI from infancy to adulthood and compared them to the genetic correlations of height. METHODS: We pooled individual level data from 25 longitudinal twin cohorts including 38,530 complete twin pairs and having 283,766 longitudinal height and weight measures. The data were analyzed using Cholesky decomposition offering genetic and environmental correlations of BMI and height between all age combinations from 1 to 19 years of age. RESULTS: The genetic correlations of BMI and height were stronger than the trait correlations. For BMI, we found that genetic correlations decreased as the age between the assessments increased, a trend that was especially visible from early to middle childhood. In contrast, for height, the genetic correlations were strong between all ages. Age-to-age correlations between environmental factors shared by co-twins were found for BMI in early childhood but disappeared altogether by middle childhood. For height, shared environmental correlations persisted from infancy to adulthood. CONCLUSIONS: Our results suggest that the genes affecting BMI change over childhood and adolescence leading to decreasing age-to-age genetic correlations. This change is especially visible from early to middle childhood indicating that new genetic factors start to affect BMI in middle childhood. Identifying mediating pathways of these genetic factors can open possibilities for interventions, especially for those children with high genetic predisposition to adult obesity

    Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development.

    Get PDF
    Auxin phytohormones control most aspects of plant development through a complex and interconnected signaling network. In the presence of auxin, AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors are targeted for degradation by the SKP1-CULLIN1-F-BOX (SCF) ubiquitin-protein ligases containing TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). CULLIN1-neddylation is required for SCFTIR1/AFB functionality, as exemplified by mutants deficient in the NEDD8-activating enzyme subunit AUXIN-RESISTANT 1 (AXR1). Here, we report a chemical biology screen that identifies small molecules requiring AXR1 to modulate plant development. We selected four molecules of interest, RubNeddin 1 to 4 (RN1 to -4), among which RN3 and RN4 trigger selective auxin responses at transcriptional, biochemical, and morphological levels. This selective activity is explained by their ability to consistently promote the interaction between TIR1 and a specific subset of AUX/IAA proteins, stimulating the degradation of particular AUX/IAA combinations. Finally, we performed a genetic screen using RN4, the RN with the greatest potential for dissecting auxin perception, which revealed that the chromatin remodeling ATPase BRAHMA is implicated in auxin-mediated apical hook development. These results demonstrate the power of selective auxin agonists to dissect auxin perception for plant developmental functions, as well as offering opportunities to discover new molecular players involved in auxin responses

    Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age

    Get PDF
    Background Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. Methods We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. Results We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P <1.06 x 10(- 7), of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. Conclusions We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.Peer reviewe
    corecore