97 research outputs found

    Manipulating host resistance structure reveals impact of pathogen dispersal and environmental heterogeneity on epidemics

    Get PDF
    Understanding how variation in hosts, parasites, and the environment shapes patterns of disease is key to predicting ecological and evolutionary outcomes of epidemics. Yet in spatially structured populations, variation in host resistance may be spatially confounded with variation in parasite dispersal and environmental factors that affect disease processes. To tease apart these disease drivers, we paired surveys of natural epidemics with experiments manipulating spatial variation in host susceptibility to infection. We mapped epidemics of the wind-dispersed powdery mildew pathogen Podosphaera plantaginis in five populations of its plant host, Plantago lanceolata. At 15 replicate sites within each population, we deployed groups of healthy potted 'sentinel' plants from five allopatric host lines. By tracking which sentinels became infected in the field and measuring pathogen connectivity and microclimate at those sites, we could test how variation in these factors affected disease when spatial variation in host resistance and soil conditions was minimized. We found that the prevalence and severity of sentinel infection varied over small spatial scales in the field populations, largely due to heterogeneity in pathogen prevalence on wild plants and unmeasured environmental factors. Microclimate was critical for disease spread only at the onset of epidemics, where humidity increased infection risk. Sentinels were more likely to become infected than initially healthy wild plants at a given field site. However, in a follow-up laboratory inoculation study we detected no significant differences between wild and sentinel plant lines in their qualitative susceptibility to pathogen isolates from the field populations, suggesting that primarily non-genetic differences between sentinel and wild hosts drove their differential infection rates in the field. Our study leverages a multi-faceted experimental approach to disentangle important biotic and abiotic drivers of disease patterns within wild populations.Peer reviewe

    Habitat, predators, and hosts regulate disease in Daphnia through direct and indirect pathways

    Full text link
    Community ecology can link habitat to disease via interactions among habitat, focal hosts, other hosts, their parasites, and predators. However, complicated food web interactions (i.e., trophic interactions among predators and their impacts on host density and diversity) often obscure the important pathways regulating disease. Here, we disentangle community drivers in a case study of planktonic disease, using a two‐step approach. In step one, we tested univariate field patterns linking community interactions directly to two disease metrics. Density of focal hosts (Daphnia dentifera) was related to density but not prevalence of fungal (Metschnikowia bicuspidata) infections. Both disease metrics appeared to be driven by selective predators that cull infected hosts (fish, e.g., Lepomis macrochirus), sloppy predators that spread parasites while feeding (midges, Chaoborus punctipennis), and spore predators that reduce contact between focal hosts and parasites (other zooplankton, especially small‐bodied Ceriodaphnia sp.). Host diversity also negatively correlated with disease, suggesting a dilution effect. However, several of these univariate patterns were initially misleading, due to confounding ecological links among habitat, predators, host density, and host diversity. In step two, path models uncovered and explained these misleading patterns, and grounded them in habitat structure (refuge size). First, rather than directly reducing infection prevalence, fish predation drove disease indirectly through changes in density of midges and frequency of small spore predators (which became more frequent in lakes with small refuges). Second, small spore predators drove the two disease metrics through fundamentally different pathways: they directly reduced infection prevalence, but indirectly reduced density of infected hosts by lowering density of focal hosts (likely via competition). Third, the univariate diversity–disease pattern (signaling a dilution effect) merely reflected the confounding direct effects of these small spore predators. Diversity per se had no effect on disease, after accounting for the links between small spore predators, diversity, and infection prevalence. In turn, these small spore predators were regulated by both size‐selective fish predation and refuge size. Thus, path models not only explain each of these surprising results, but also trace their origins back to habitat structure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134436/1/ecm1222_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134436/2/ecm1222-sup-0001-AppendixS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134436/3/ecm1222.pd

    Understanding the ecology and evolution of host-parasite interactions across scales

    Get PDF
    Predicting the emergence, spread and evolution of parasites within and among host populations requires insight to both the spatial and temporal scales of adaptation, including an understanding of within-host up through community-level dynamics. Although there are very few pathosystems for which such extensive data exist, there has been a recent push to integrate studies performed over multiple scales or to simultaneously test for dynamics occurring across scales. Drawing on examples from the literature, with primary emphasis on three diverse host-parasite case studies, we first examine current understanding of the spatial structure of host and parasite populations, including patterns of local adaptation and spatial variation in host resistance and parasite infectivity. We then explore the ways to measure temporal variation and dynamics in host-parasite interactions and discuss the need to examine change over both ecological and evolutionary timescales. Finally, we highlight new approaches and syntheses that allow for simultaneous analysis of dynamics across scales. We argue that there is great value in examining interplay among scales in studies of host-parasite interactions.Peer reviewe

    Pathological and ecological host consequences of infection by an introduced fish parasite

    Get PDF
    The infection consequences of the introduced cestode fish parasite Bothriocephalus acheilognathi were studied in a cohort of wild, young-of-the-year common carp Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort, parasite prevalence was 42% and parasite burdens were up to 12% body weight. Pathological changes within the intestinal tract of parasitized carp included distension of the gut wall, epithelial compression and degeneration, pressure necrosis and varied inflammatory changes. These were most pronounced in regions containing the largest proportion of mature proglottids. Although the body lengths of parasitized and non-parasitized fish were not significantly different, parasitized fish were of lower body condition and reduced weight compared to non-parasitized conspecifics. Stable isotope analysis (δ15N and δ13C) revealed trophic impacts associated with infection, particularly for δ15N where values for parasitized fish were significantly reduced as their parasite burden increased. In a controlled aquarium environment where the fish were fed ad libitum on an identical food source, there was no significant difference in values of δ15N and δ13C between parasitized and non-parasitized fish. The growth consequences remained, however, with parasitized fish growing significantly slower than non-parasitized fish, with their feeding rate (items s−1) also significantly lower. Thus, infection by an introduced parasite had multiple pathological, ecological and trophic impacts on a host with no experience of the parasite

    Life-history correlations change under coinfection leading to higher pathogen load

    Get PDF
    The ability of a parasite strain to establish and grow on its host may be drastically altered by simultaneous infection by other parasite strains. However, we still lack an understanding of how life-history allocations may change under coinfection, although life-history correlations are a critical mechanism restricting the evolutionary potential and epidemiological dynamics of pathogens. Here, we study how life-history stages and their correlations change in the obligate fungal pathogen Podosphaera plantaginis under single infection and coinfection scenarios. We find increased pathogen loads under coinfection, but this is not explained by an enhanced performance at any of the life-history stages that constitute infections. Instead, we show that under coinfection the correlation between timing of sporulation and final pathogen load becomes positive. The changes in pathogen life-history allocations leading to more severe infections under coinfection can have far-reaching epidemiological consequences, as well as implication for our understanding of the evolution of virulence.Peer reviewe

    Integrated field, laboratory, and theoretical study of PKD spread in a Swiss prealpine river

    Get PDF
    Proliferative kidney disease (PKD) is a major threat to wild and farmed salmonid populations because of its lethal effect at high water temperatures. Its causative agent, the myxozoan Tetracapsuloides bryosalmonae, has a complex lifecycle exploiting freshwater bryozoans as primary hosts and salmonids as secondary hosts. We carried out an integrated study of PKD in a prealpine Swiss river (the Wigger). During a 3-year period, data on fish abundance, disease prevalence, concentration of primary hostsâ\u80\u99 DNA in environmental samples [environmental DNA (eDNA)], hydrological variables, and water temperatures gathered at various locations within the catchment were integrated into a newly developed metacommunity model, which includes ecological and epidemiological dynamics of fish and bryozoans, connectivity effects, and hydrothermal drivers. Infection dynamics were captured well by the epidemiological model, especially with regard to the spatial prevalence patterns. PKD prevalence in the sampled sites for both young-of-the-year (YOY) and adult brown trout attained 100% at the end of summer, while seasonal population decay was higher in YOY than in adults. We introduce a method based on decay distance of eDNA signal predicting local speciesâ\u80\u99 density, accounting for variation in environmental drivers (such as morphology and geology). The model provides a whole-network overview of the disease prevalence. In this study, we show how spatial and environmental characteristics of river networks can be used to study epidemiology and disease dynamics of waterborne diseases

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore