216 research outputs found
Edge fires drive the shape and stability of tropical forests
In tropical regions, fires propagate readily in grasslands but typically
consume only edges of forest patches. Thus forest patches grow due to tree
propagation and shrink by fires in surrounding grasslands. The interplay
between these competing edge effects is unknown, but critical in determining
the shape and stability of individual forest patches, as well the
landscape-level spatial distribution and stability of forests. We analyze
high-resolution remote-sensing data from protected areas of the Brazilian
Cerrado and find that forest shapes obey a robust perimeter-area scaling
relation across climatic zones. We explain this scaling by introducing a
heterogeneous fire propagation model of tropical forest-grassland ecotones.
Deviations from this perimeter-area relation determine the stability of
individual forest patches. At a larger scale, our model predicts that the
relative rates of tree growth due to propagative expansion and long-distance
seed dispersal determine whether collapse of regional-scale tree cover is
continuous or discontinuous as fire frequency changes.Comment: 21 pages, 4 figure
Disease and fire interact to influence transitions between savanna-forest ecosystems over a multi-decadal experiment
Global change is shifting disturbance regimes that may rapidly change ecosystems, sometimes causing ecosystems to shift between states. Interactions between disturbances such as fire and disease could have especially severe effects, but experimental tests of multi-decadal changes in disturbance regimes are rare. Here, we surveyed vegetation for 35 years in a 54-year fire frequency experiment in a temperate oak savanna-forest ecotone that experienced a recent outbreak of oak wilt. Different fire regimes determined whether plots were savanna or forest by regulating tree abundance (r(2) = 0.70), but disease rapidly reversed the effect of fire exclusion, increasing mortality by 765% in unburned forests, but causing relatively minor changes in frequently burned savannas. Model simulations demonstrated that disease caused unburned forests to transition towards a unique woodland that was prone to transition to savanna if fire was reintroduced. Consequently, disease-fire interactions could shift ecosystem resilience and biome boundaries as pathogen distributions change
Understanding and modelling wildfire regimes: An ecological perspective
© 2021 The Author(s).Recent extreme wildfire seasons in several regions have been associated with exceptionally hot, dry conditions, made more probable by climate change. Much research has focused on extreme fire weather and its drivers, but natural wildfire regimes—and their interactions with human activities—are far from being comprehensively understood. There is a lack of clarity about the 'causes' of wildfire, and about how ecosystems could be managed for the co-existence of wildfire and people. We present evidence supporting an ecosystem-centred framework for improved understanding and modelling of wildfire. Wildfire has a long geological history and is a pervasive natural process in contemporary plant communities. In some biomes, wildfire would be more frequent without human settlement; in others they would be unchanged or less frequent. A world without fire would have greater forest cover, especially in present-day savannas. Many species would be missing, because fire regimes have co-evolved with plant traits that resist, adapt to or promote wildfire. Certain plant traits are favoured by different fire frequencies, and may be missing in ecosystems that are normally fire-free. For example, post-fire resprouting is more common among woody plants in high-frequency fire regimes than where fire is infrequent. The impact of habitat fragmentation on wildfire crucially depends on whether the ecosystem is fire-adapted. In normally fire-free ecosystems, fragmentation facilitates wildfire starts and is detrimental to biodiversity. In fire-adapted ecosystems, fragmentation inhibits fires from spreading and fire suppression is detrimental to biodiversity. This interpretation explains observed, counterintuitive patterns of spatial correlation between wildfire and potential ignition sources. Lightning correlates positively with burnt area only in open ecosystems with frequent fire. Human population correlates positively with burnt area only in densely forested regions. Models for vegetation-fire interactions must be informed by insights from fire ecology to make credible future projections in a changing climate.We gratefully acknowledge support from the Leverhulme Centre for Wildfires, Environment and Society, who organized the virtual mini-workshop which initiated the writing of this paper. RKN is supported by the Leverhulme Centre. SPH and YS acknowledge support from the ERC-funded project GC2.0 (Global Change 2.0: Unlocking the past for a clearer future, Grant Number 694481). ICP, KJB and ND acknowledge support from the ERC-funded project REALM (Re-inventing Ecosystem And Land-surface Models, Grant Number 787203). JCH acknowledges funding from the ERC project SCATAPNUT (Grant Number 681885). This work is a contribution to the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program (SPH, YS and ICP)
Decadal changes in fire frequencies shift tree communities and functional traits
Global change has resulted in chronic shifts in fire regimes. Variability in the sensitivity of tree communities to multi-decadal changes in fire regimes is critical to anticipating shifts in ecosystem structure and function, yet remains poorly understood. Here, we address the overall effects of fire on tree communities and the factors controlling their sensitivity in 29 sites that experienced multi-decadal alterations in fire frequencies in savanna and forest ecosystems across tropical and temperate regions. Fire had a strong overall effect on tree communities, with an average fire frequency (one fire every three years) reducing stem density by 48% and basal area by 53% after 50 years, relative to unburned plots. The largest changes occurred in savanna ecosystems and in sites with strong wet seasons or strong dry seasons, pointing to fire characteristics and species composition as important. Analyses of functional traits highlighted the impact of fire-driven changes in soil nutrients because frequent burning favoured trees with low biomass nitrogen and phosphorus content, and with more efficient nitrogen acquisition through ectomycorrhizal symbioses. Taken together, the response of trees to altered fire frequencies depends both on climatic and vegetation determinants of fire behaviour and tree growth, and the coupling between fire-driven nutrient losses and plant traits
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance and Operation of the CMS Electromagnetic Calorimeter
The operation and general performance of the CMS electromagnetic calorimeter
using cosmic-ray muons are described. These muons were recorded after the
closure of the CMS detector in late 2008. The calorimeter is made of lead
tungstate crystals and the overall status of the 75848 channels corresponding
to the barrel and endcap detectors is reported. The stability of crucial
operational parameters, such as high voltage, temperature and electronic noise,
is summarised and the performance of the light monitoring system is presented
The CanOE Strategy: Integrating Genomic and Metabolic Contexts across Multiple Prokaryote Genomes to Find Candidate Genes for Orphan Enzymes
Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes), a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short). The first step locates “genomic metabolons”, i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12
The infant feeding activity and nutrition trial (INFANT) an early intervention to prevent childhood obesity : cluster-randomised controlled trial
Background : Multiple factors combine to support a compelling case for interventions that target the development of obesity-promoting behaviours (poor diet, low physical activity and high sedentary behaviour) from their inception. These factors include the rapidly increasing prevalence of fatness throughout childhood, the instigation of obesity-promoting behaviours in infancy, and the tracking of these behaviours from childhood through to adolescence and adulthood. The Infant Feeding Activity and Nutrition Trial (INFANT) aims to determine the effectiveness of an early childhood obesity prevention intervention delivered to first-time parents. The intervention, conducted with parents over the infant\u27s first 18 months of life, will use existing social networks (first-time parent\u27s groups) and an anticipatory guidance framework focusing on parenting skills which support the development of positive diet and physical activity behaviours, and reduced sedentary behaviours in infancy.Methods/Design : This cluster-randomised controlled trial, with first-time parent groups as the unit of randomisation, will be conducted with a sample of 600 first-time parents and their newborn children who attend the first-time parents\u27 group at Maternal and Child Health Centres. Using a two-stage sampling process, local government areas in Victoria, Australia will be randomly selected at the first stage. At the second stage, a proportional sample of first-time parent groups within selected local government areas will be randomly selected and invited to participate. Informed consent will be obtained and groups will then be randomly allocated to the intervention or control group.Discussion : The early years hold promise as a time in which obesity prevention may be most effective. To our knowledge this will be the first randomised trial internationally to demonstrate whether an early health promotion program delivered to first-time parents in their existing social groups promotes healthy eating, physical activity and reduced sedentary behaviours. If proven to be effective, INFANT may protect children from the development of obesity and its associated social and economic costs.<br /
In silico pathway reconstruction: Iron-sulfur cluster biogenesis in Saccharomyces cerevisiae
BACKGROUND: Current advances in genomics, proteomics and other areas of molecular biology make the identification and reconstruction of novel pathways an emerging area of great interest. One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC). RESULTS: Our goal is the development of a new approach based on the use and combination of mathematical, theoretical and computational methods to identify the topology of a target network. In this approach, mathematical models play a central role for the evaluation of the alternative network structures that arise from literature data-mining, phylogenetic profiling, structural methods, and human curation. As a test case, we reconstruct the topology of the reaction and regulatory network for the mitochondrial ISC biogenesis pathway in S. cerevisiae. Predictions regarding how proteins act in ISC biogenesis are validated by comparison with published experimental results. For example, the predicted role of Arh1 and Yah1 and some of the interactions we predict for Grx5 both matches experimental evidence. A putative role for frataxin in directly regulating mitochondrial iron import is discarded from our analysis, which agrees with also published experimental results. Additionally, we propose a number of experiments for testing other predictions and further improve the identification of the network structure. CONCLUSION: We propose and apply an iterative in silico procedure for predictive reconstruction of the network topology of metabolic pathways. The procedure combines structural bioinformatics tools and mathematical modeling techniques that allow the reconstruction of biochemical networks. Using the Iron Sulfur cluster biogenesis in S. cerevisiae as a test case we indicate how this procedure can be used to analyze and validate the network model against experimental results. Critical evaluation of the obtained results through this procedure allows devising new wet lab experiments to confirm its predictions or provide alternative explanations for further improving the models
Conceiving “personality”: Psychologist’s challenges and basic fundamentals of the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals
Scientists exploring individuals, as such scientists are individuals themselves and thus not independent from their objects of research, encounter profound challenges; in particular, high risks for anthropo-, ethno- and ego-centric biases and various fallacies in reasoning. The Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) aims to tackle these challenges by exploring and making explicit the philosophical presuppositions that are being made and the metatheories and methodologies that are used in the field. This article introduces basic fundamentals of the TPS-Paradigm including the epistemological principle of complementarity and metatheoretical concepts for exploring individuals as living organisms. Centrally, the TPS-Paradigm considers three metatheoretical properties (spatial location in relation to individuals’ bodies, temporal extension, and physicality versus “non-physicality”) that can be conceived in different forms for various kinds of phenomena explored in individuals (morphology, physiology, behaviour, the psyche, semiotic representations, artificially modified outer appearances and contexts). These properties, as they determine the phenomena’s accessibility in everyday life and research, are used to elaborate philosophy-of-science foundations and to derive general methodological implications for the elementary problem of phenomenon-methodology matching and for scientific quantification of the various kinds of phenomena studied. On the basis of these foundations, the article explores the metatheories and methodologies that are used or needed to empirically study each given kind of phenomenon in individuals in general. Building on these general implications, the article derives special implications for exploring individuals’ “personality”, which the TPS-Paradigm conceives of as individual-specificity in all of the various kinds of phenomena studied in individuals
- …