68 research outputs found
A Statistical Estimator for Determining the Limits of Contemporary and Historic Phenology
Climate change affects not just where species are found, but also when species’ key life-history events occur—their phenology. Measuring such changes in timing is often hampered by a reliance on biased survey data: surveys identify that an event has taken place (for example, the flower is in bloom), but not when that event happened (for example, the flower bloomed yesterday). Here, we show that this problem can be circumvented using statistical estimators, which can provide accurate and unbiased estimates from sparsely sampled observations. We demonstrate that such methods can resolve an ongoing debate about the relative timings of the onset and cessation of flowering, and allow us to place modern observations reliably within the context of the vast wealth of historical data that reside in herbaria, museum collections, and written records. We also analyse large-scale citizen science data from the United States National Phenology Network and reveal not just earlier but also potentially more variable flowering in recent years. Evidence for greater variability through time is important because increases in variation are characteristic of systems approaching a state change
On the Relationship Between Phylogenetic Diversity and Trait Diversity
Niche differences are key to understanding the distribution and structure of biodiversity. To examine niche differences, we must first characterize how species occupy niche space, and two approaches are commonly used in the ecological literature. The first uses species traits to estimate multivariate trait space (so‐called functional trait diversity, FD); the second quantifies the amount of time or evolutionary history captured by a group of species (phylogenetic diversity, PD). It is often—but controversially—assumed that these putative measures of niche space are at a minimum correlated and perhaps redundant, since more evolutionary time allows for greater accumulation of trait changes. This theoretical expectation remains surprisingly poorly evaluated, particularly in the context of multivariate measures of trait diversity. We evaluated the relationship between phylogenetic diversity and trait diversity using analytical and simulation‐based methods across common models of trait evolution. We show that PD correlates with FD increasingly strongly as more traits are included in the FD measure. Our results indicate that phylogenetic diversity can be a useful surrogate for high‐dimensional trait diversity, but we also show that the correlation weakens when the underlying process of trait evolution includes variation in rate and optima
Reply to: “Global Conservation of Phylogenetic Diversity Captures More Than Just Functional Diversity”
Academic biologists have long advocated for conserving phylogenetic diversity (PD), often (but not exclusively) on the basis that PD is a useful proxy for “feature diversity”, defined as the variety of forms and functions represented in set of organisms (see below for an extended discussion of this definition). In a recent paper, we assess the extent to which this proxy (which we coined the “phylogenetic gambit”) holds in three empirical datasets (terrestrial mammals, birds, and tropical marine fishes) when using functional traits and functional diversity (FD) to operationalize feature diversity. Owen et al. offer a criticism of our methods for quantifying feature diversity with FD and disagree with our conclusions. We are grateful that Owen et al. have engaged thoughtfully with our work, but we believe there are more points of agreement than Owen et al. imply
Prioritizing Phylogenetic Diversity Captures Functional Diversity Unreliably
In the face of the biodiversity crisis, it is argued that we should prioritize species in order to capture high functional diversity (FD). Because species traits often reflect shared evolutionary history, many researchers have assumed that maximizing phylogenetic diversity (PD) should indirectly capture FD, a hypothesis that we name the “phylogenetic gambit”. Here, we empirically test this gambit using data on ecologically relevant traits from \u3e15,000 vertebrate species. Specifically, we estimate a measure of surrogacy of PD for FD. We find that maximizing PD results in an average gain of 18% of FD relative to random choice. However, this average gain obscures the fact that in over one-third of the comparisons, maximum PD sets contain less FD than randomly chosen sets of species. These results suggest that, while maximizing PD protection can help to protect FD, it represents a risky conservation strategy
Variable responses of individual species to tropical forest degradation
The functional stability of ecosystems depends greatly on interspecific differences in responses to environmental perturbation. However, responses to perturbation are not necessarily invariant among populations of the same species, so intraspecific variation in responses might also contribute. Such inter-population response diversity has recently been shown to occur spatially across species ranges, but we lack estimates of the extent to which individual populations across an entire community might have perturbation responses that vary through time. We assess this using 524 taxa that have been repeatedly surveyed for the effects of tropical forest logging at a focal landscape in Sabah, Malaysia. Just 39 % of taxa – all with non-significant responses to forest degradation – had invariant responses. All other taxa (61 %) showed significantly different responses to the same forest degradation gradient across surveys, with 6 % of taxa responding to forest degradation in opposite directions across multiple surveys. Individual surveys had low power (< 80 %) to determine the correct direction of response to forest degradation for one-fifth of all taxa. Recurrent rounds of logging disturbance increased the prevalence of intra-population response diversity, while uncontrollable environmental variation and/or turnover of intraspecific phenotypes generated variable responses in at least 44 % of taxa. Our results show that the responses of individual species to local environmental perturbations are remarkably flexible, likely providing an unrealised boost to the stability of disturbed habitats such as logged tropical forests
Genomic comparisons reveal biogeographic and anthropogenic impacts in the koala (Phascolarctos cinereus): a dietary-specialist species distributed across heterogeneous environments
The Australian koala is an iconic marsupial with highly specific dietary requirements distributed across heterogeneous environments, over a large geographic range. The distribution and genetic structure of koala populations has been heavily influenced by human actions, specifically habitat modification, hunting and translocation of koalas. There is currently limited information on population diversity and gene flow at a species-wide scale, or with consideration to the potential impacts of local adaptation. Using species-wide sampling across heterogeneous environments, and high-density genome-wide markers (SNPs and PAVs), we show that most koala populations display levels of diversity comparable to other outbred species, except for those populations impacted by population reductions. Genetic clustering analysis and phylogenetic reconstruction reveals a lack of support for current taxonomic classification of three koala subspecies, with only a single evolutionary significant unit supported. Furthermore, similar to 70% of genetic variance is accounted for at the individual level. The Sydney Basin region is highlighted as a unique reservoir of genetic diversity, having higher diversity levels (i.e., Blue Mountains region; AvHe(corr)-0.20, PL% = 68.6). Broad-scale population differentiation is primarily driven by an isolation by distance genetic structure model (49% of genetic variance), with clinal local adaptation corresponding to habitat bioregions. Signatures of selection were detected between bioregions, with no single region returning evidence of strong selection. The results of this study show that although the koala is widely considered to be a dietary-specialist species, this apparent specialisation has not limited the koala's ability to maintain gene flow and adapt across divergent environments as long as the required food source is available
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Thresholds for adding degraded tropical forest to the conservation estate
Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked
- …