
Title page1

Article title: A statistical estimator for determining the limits of contemporary and historic phenol-2

ogy3

Authors: William D. Pearse1,2,3,∗, Charles C. Davis4, David W. Inouye5, Richard B. Primack6 & T.4

Jonathan Davies15

1 Department of Biology, McGill University, Montréal, QC, Canada6
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Climate change affects not just where species are found, but also when species’ key life-history18

events occur—their phenology. Measuring such changes in timing is often hampered by a reliance19

on biased survey data: surveys identify that an event has taken place (e.g., the flower is in bloom),20

but not when that event happened (e.g., the flower bloomed yesterday). Here we show that this21

problem can be circumvented using statistical estimators, which can provide accurate and unbiased22

estimates from sparsely sampled observations. We demonstrate that such methods can resolve an23

ongoing debate about the relative timings of the onset and cessation of flowering, and allow us to24

reliably place modern observations within the context of the vast wealth of historical data that reside25

in herbaria, museum collections, and written records. We then analyse large-scale citizen-science26

data from the USA National Phenology Network, and reveal not just earlier but also potentially27

more variable flowering in recent years. Evidence for greater variability through time is important28

because increases in variation are characteristic of systems approaching a state change.29

Anthropogenic climate forcing is likely to increase global temperature by more than 1.5 ◦C by the end of30

this century1. In response to this rapid environmental shift, species must track favourable conditions by31

moving or altering the timing of their life-history strategies—their phenology—to flower, breed, or mi-32

grate sooner2,3. However, predicting species’ phenological responses is not straightforward: experimental33

data often do not match observations4, and sampling of observational data is frequently limited. Citizen34

scientists5 and historical collections6,7 have emerged as valuable sources of ecological data, and on-going35

efforts to digitise museum and herbarium collections are making available an unprecedented wealth of his-36

torical records8–11. Despite their promise, such data present numerous statistical challenges: they are often37

sparsely sampled spatially and unevenly distributed through time12, and while they can provide informa-38

tion on the relative timing of events they do not necessarily capture their first occurrence. Compounding39

this problem, most statistical tools are designed to study changes in species’ mean responses, not variation40

in the onset of events.41

Here we present a method derived from the extinction biology literature13 to address these challenges,42

and provide three case studies that illustrate the potential of the approach in phenological research. While43

we focus on plant flowering time here, this approach would also be applicable to other systems, such as44

the phenology of bird migrations and insect emergence, or the limits of other continuous data such as45
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environmental tolerances. First, we revisit an ongoing debate about shifts in timing of the onset, peak46

(middle), and cessation of flowering. Second, we show how our approach can reconcile distinct datasets47

with different sampling (historical collections and field observations), greatly expanding the temporal and48

climatic ranges across which we can measure change. Third, we apply our method to a sparsely sampled49

citizen science dataset and find evidence not that climate change is not just altering the timing of plant50

flowering, but also increasing its variability through time.51

Results and discussion52

Statistically estimating the start of a process. Estimating the onset of a phenological event is but one53

instance of the more general problem of determining the absolute limit of a distribution. The tails of54

distributions are infamously difficult to model because there are fewer data to parameterise them and a55

single data point can invalidate all previous estimates. This challenge is similar to the ‘German Tank56

Problem’, which was faced by Allied forces during World War II who wanted to estimate the number57

of German tanks (the limit of the distribution of serial numbers) but only had access to the sequential58

serial numbers of observed (defeated) tanks14. We suggest here a solution to this problem that parallels59

methods first described to determine the date a species went extinct13. The general approach is to model60

the distribution of the earliest observations using a (very flexible) Weibull distribution, which provides61

an estimate of the start of the observed process (e.g., plants flowering). The joint distribution of the most62

recent sightings has approximately the same Weibull form irrespective of the distribution from which those63

sightings were sampled15, making it well-suited to data collected under different sampling regimes. The64

estimate for the first occurrence of any event is thus the sum of the times of the first k events, weighted in65

part according to the joint-Weibull-distribution of all the sightings (following [13] who focused on the last66

k events). While confidence intervals are defined for this estimate, standard errors must be parametrically67

bootstrapped as their formula is currently unknown16. Figure 1 gives an example of how this approach68

can provide an estimate of when a process (such as flowering) started, even if the very beginning of that69

process wasn’t directly observed.70

Using simulations we demonstrate that our approach has greater power to detect the true onset of a process71
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than existing methods that use only the first observation (see Methods). This is because our approach72

draws strength from the first k measurements, not just the single earliest observation. This also allows73

for confidence intervals and standard errors to be placed around an estimate, which is impossible when74

working with the first observation alone. Just as any measure of the central tendency of a distribution (e.g.,75

a mean) should not be considered in isolation of the distribution and number of observations underlying it,76

the same is true of estimates of the limits of a distribution. We note, also, that attempting to estimate the77

limit of a distribution by averaging across estimates, as is common in phenological studies, is inherently78

biased: the average of the two (or more) earliest observations must, by definition, be later than the earliest79

observation. This has implications not just for generating mean estimates of the onset of flowering, but80

also for commonly-used statistical models that implicitly rely upon averages (e.g., ANOVA and multiple81

regression). The following case studies illustrate the potential of our approach.82

Relative change in the onset, peak, and cessation of flowering. First, we re-examined a comprehensive83

dataset of over two million observations made throughout the last 39 years in the Rocky Mountains of84

Colorado17,18 to explore changes in the onset, peak, and cessation of flowering. Previous work on this85

detailed dataset reported discordance in temporal shifts among phenophases19. This finding suggests that86

communities of co-flowering species may be profoundly altered under climate change, with potentially87

negative consequences for currently co-occurring pollinator and herbivore communities20. Here, using88

our approach that controls for differences in sampling, we find, surprisingly and to the contrary, a close89

alignment of change through time among these three aspects of flowering phenology in the same data90

(Figure 2). Because we are able to measure the confidence in our estimates, our approach allows us91

to overcome implicit sampling biases in observation data. For example, there is both theoretical and92

empirical evidence that greater sampling effort increases the chances of observing an event earlier21. Such93

sampling biases are difficult to avoid when using the first (or last) observation as a measurement, but can94

be corrected for when working with a statistical estimator derived from sampling theory, as used here.95

While it is uncertain whether these results hold elsewhere, the unprecedented degree of sampling in this96

system urges a re-assessment of this controversial aspect of plant phenology.97

Reconciling historic herbarium and field observations. Second, we contrast estimates of first flower-98

ing derived from herbarium records with a well-studied historical dataset on flowering times from Mas-99
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sachusetts (USA) initiated by Henry David Thoreau in the 1850s. Despite the age and richness of herbar-100

ium data, the records are unevenly sampled through time, making direct comparisons between datasets101

challenging21. While there is a strong correlation between rates of change in herbarium and field obser-102

vations, herbarium records tend to better sample peak flowering, such that recorded dates of first-flower103

from the two datasets are not directly comparable22. As we show in Figure 3, by applying our approach104

we directly reconcile estimates of first flowering from these two datasets despite differences in sampling:105

the two datasets not only show correlated changes through time, but how dates of flowering coincide. This106

is because our approach can use the collection dates of herbarium records to generate a statistical estimate107

of the onset of flowering, despite having no direct records of the actual onset. This gives hope that our108

approach can be used to reconcile modern and historical datasets, increasing our power to detect whether109

current conditions differ from those in the past and so mitigate shifting baseline syndrome23. In addition,110

by leveraging the vast wealth of data in herbaria, our method allows us to dramatically expand the cli-111

mate space within which we can study plant phenological responses22, which is currently strongly biased112

towards northern temperate biomes24.113

Increased variation in flowering phenology across North America. Third, we apply our method to phe-114

nological observations from the National Phenology Network25 (NPN), one of the largest citizen-science115

monitoring schemes, with more than a million records spanning the continental US over the last decade.116

In parallel with the increasing appreciation and use of collections data, citizen science has emerged as a117

powerful tool for collecting large amounts of data across broad taxonomic and spatial scales5. However,118

like herbarium records, such data often suffer from poor sampling for rare or difficult to identify events,119

potentially biasing estimates for those species most at risk from climate change. Because our method120

requires relatively few samples (see Methods), it is well-suited for such cases. For our analysis, we calcu-121

lated an estimate of first flowering for each species, in each year and state, with more than five records. As122

the potential for sampling error in such a broad dataset is high, we used a hierarchical Bayesian approach123

that allowed us to propagate error clearly throughout every stage of the analysis. Such models are robust124

to over-parameterisation26, and so we can model each species with a hierarchically-drawn intercept and125

slope of change through time.126

Our model has two main components: (1) systematic variation in the date of first-flower as a function127
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of the species, state where it was observed, and year of an observation and (2) estimated variation in the128

date of first flower (full details are presented in Methods). Our model finds increases in first-flower date129

of 2.49 days from 2009 to 2015 on average within New York (the state with most data in our model;130

see Table 1a and Methods), but average rates of change mask significant variation among species (Table131

1b). Flowering date is negatively associated with temperature—warmer temperatures result in earlier132

flowering—however, estimates of the pooling of the overall mean date of first flowering among species133

and states suggest that, once climate is accounted for, species’ flowering dates are relatively invariant134

among states (see Table 1b). Taken together, these results indicate that species are responding consistently135

to climate across the continental US.136

There are two reasons to be cautious when interpreting the magnitude of these flowering responses to137

temperature through time. First, we only used data covering the period 2009–2015, and so our model may138

not capture decadal dynamics of flowering responses. However, our model is consistent with independent139

data across the period 2001–2008 (Figure 4) whose mean date of first flower is later than that of 2009–140

2015 (as predicted by our model; t77 = 4.30, p < 0.0001). Second, our model suggests an increase in the141

variability of the date of first-flower through time (Table 1), which is also visible in Figure 4. This increase142

in the variability of the date of first-flower through time likely obscures the degree of phenological change143

we are already experiencing in North America. Conservatively comparing our modelling results for 2011144

and 2015, the variation in first-flower date has increased 13% (coefficient of variation (σ
2

µ
); see Figure145

4).146

That variability is increasing through time is important as increases in the unpredictability of, and variation147

in, a system are thought to be indicative of a system approaching a regime shift27,28. There is accumulat-148

ing evidence that species are approaching the limit of their capacity to adapt their phenology to climate149

change29–31, and we suggest that our results are consistent with species being pushed to their limits of phe-150

nological adaptation. By using a Bayesian approach to model-fitting, we are able to estimate the relative151

support for our hypothesis, and found that it is twice as likely that the variance is increasing through time152

than decreasing (on the basis of posterior densities; see Table 1 and Methods). It is possible that the expan-153

sion of the NPN scheme through time might have contributed to this pattern. However, we found a similar154

tendency for increasing variation in the more detailed and consistently sampled Rocky Mountain dataset,155
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with much greater confidence (99.15% probability of increase through time; see Methods). Detecting such156

an increase in variation through time would be difficult, if not impossible, in studies using space-for-time157

substitutions or lacking a hierarchical modelling framework such as ours.158

Conclusion159

The dual approach we have presented here of accounting for uncertainty around estimates and using a mod-160

elling framework that allows uncertainty to percolate through into predictions, allows for a more robust161

understanding of climate-driven phenological shifts. By drawing information from the sampled distribu-162

tion of records and not simply the first observation, our approach accurately estimates the timing of first163

events from sparsely collected data. We show how this has far-reaching consequences for our understand-164

ing of flowering phenology, and allows us to marry historic and modern datasets and so vastly increase the165

temporal and climatic range over which we can study phenological change. Applying our method to one166

intensively-studied field dataset, and another continental-scale citizen-science dataset, we find tentative167

evidence for an increase in the variability of phenology through time. Increases in variation may have pro-168

found implications for ecosystems, and additional research is urgently needed to examine whether these169

patterns generalise beyond the North American continental and local-scale botanical systems we present170

here.171
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Figure 1: Example demonstration of the difference between our method and taking first obser-

vations at face-value. Two draws of ten samples (open red and blue circles) from the same Weibull

distribution (whose probability density is in black) are shown. Our estimates of the lower limit (start) of

the distribution are shown in filled circles, with confidence intervals also shown. Two advantages of this

new method are clear in this figure: (1) the estimates have confidence intervals, and (2) the estimates them-

selves are closer to the true onset of the process (time 0.5) than the first sample. This results from drawing

strength across all observations, not simply the single earliest observation. More details and simulations

confirming these intuitive properties are given in the Methods.
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 Bulk of flowering change/year
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Figure 2: The rate of change of the onset, bulk, and cessation of flowering through time are tightly

correlated in the Rocky Mountain dataset. This contrasts with a previous analysis not using our ap-

proach19. Each point represents a species’ rate of change (per year) of first (blue) and last (red) flowering,

plotted as a function of the change in peak flowering (bottom axis). The coloured lines emanating from

each point represent the standard error of each species’ change estimate. The thick, solid blue (onset of

flowering; slope=0.99, 95% CI 0.90–1.08) and red (cessation of flowering; slope=1.02, 95% CI 0.91–1.13)

lines are best-fit lines from a Deming regression accounting for error in both variables; the grey dashed

line is a 1:1 line for reference, and is the expectation if the dates of the onset, bulk, and cessation of flow-

ering were changing at the same rate in the data. Species’ estimates are taken from an overall model that

accounts for species’ abundance; each model had an r2adjusted greater than 74%.
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Arethusa bulbosa

Corallorhiza maculata

Cypripedium acaule

Platanthera grandiflora

Platanthera lacera

Platanthera psycodes

Pogonia ophioglossoides

Figure 3: Reconciling flowering phenology in two historic datasets21,22. Data collected between 1858

and 1902 were used, corresponding to the period of greatest overlap between the datasets when Alfred

Hosmer and Henry David Thoreau were collecting phenological data. Within the figure, the horizontal

black line represents the range of herbarium records (vertical ticks represent each observation), blue circles

the earliest field observation, and red closed circles our modelled estimate of onset from the herbarium

records (with 95% confidence intervals also in red). Our approach produces estimates that are, on average,

almost 4.96 days closer to the true onset of flowering, as recorded by Thoreau and Hosmer, than the

earliest herbarium record (paired test comparing differences between earliest observation and modelled

onset: t6 = −2.61, p = 0.0399). We acknowledge that this approach does not account for variation across

years, which is mainly driven by annual temperature variation32,33. Species with fewer than six herbarium

or field observations were excluded from the analyses; see Methods for more details.
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0.5% 2.5% Median 97.5% 99.5% SD
Overall mean (µ) 94.80 96.99 105.03 113.58 116.33 4.27
Yearly change −5.35 −4.61 −2.68 −0.99 −0.48 0.93
Temperature −1.34 −1.08 −0.29 0.45 0.67 0.38
Precipitation −0.10 −0.07 0.03 0.13 0.18 0.05
Overall variation 22.92 23.30 24.48 25.86 26.30 0.66
Yearly variation change (σ2) −0.82 −0.59 0.16 0.90 1.13 0.39

(a) Selected model coefficients
Mean Median SE SD

Species 1.00 1.00 0.013 0.001 87
State × Year 0.58 0.54 0.234 0.034 82
State 0.12 0.13 0.052 0.006 50
State × Year 0.75 0.81 0.238 0.030 01
r2 0.53 0.53 0.010 0.000 18

(b) Pooling estimates

Table 1: Modelled estimates of first flowering date in the National Phenology Network (NPN) data.

See Figure 4 for plots of the model output through time. We modelled the onset of flowering as a function

of species-specific responses and environmental conditions (see Methods). All coefficients are summaries

of Bayesian credible intervals (not frequentist confidence intervals) taken from 3200 samples across 16

Markov Chain Monte Carlo runs with all neff > 3000 and R̂ = 1 (see Methods for more details and

all model coefficients). (a) shows model coefficients taken from the posterior distribution of the model

(see Methods for all coefficients). The first four rows describe changes in the date of flowering through

time, while the last two rows describe how variation about the average flowering date changes through

time. These provide support for earlier flowering in hotter years and locations, along with more variable

flowering through time. (b) shows estimates of the degree of pooling34 for species’ and states’ mean and

change through time (‘Year’) in the data. Pooling indicates the extent to which estimates at each level

within a multi-level model vary; values close to 0 indicate variation, values close to 1 no variation. Thus

these results suggest that individual species’ flowering times varied independently, but that state-level

effects did not to the same extent.
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Figure 4: Yearly variation in flowering phenology throughout North America in the National Phe-

nology Network (NPN) data. On the vertical axis, we plot the estimated date of first flower, with point

size inversely proportional to the standard error of the estimate. The red line is the average estimate of

flowering time through time (µ in Table 1), while the blue upper and lower lines are the modelled variance

of flowering through time (σ2 in Table 1). Estimates for particular years are labelled on the graph. The

figure shows the trend for earlier flowering through time, as well as indicating the increase in variability of

first-flower date through time. We plot data from 2001–2008 that were not used to parameterise the model

in grey, to show the predictive power of the model for novel data.
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Methods188

All analyses were conducted in R version 3.3.2 [35].189

A new approach to estimating the start of a process190

Roberts & Solow13 gave formulae to produce an estimate for the end of a process, and confidence intervals191

for that estimate. These same formulae can be used to estimate the beginning of a process if the values are192

sorted ascendingly. In the accompanying supplement, we provide code (headers.R) to perform these193

calculations that re-creates the exact values as reported by Roberts & Solow13 in their original manuscript.194

Figure 1 gives a graphical example of the difference between our approach and that of taking the first195

observation at face value.196

We were unable to find an analytical solution for the standard error of the onset or end of events, and197

so used a parametric bootstrap to estimate its error (code also in headers.R). For this we estimated198

the shape parameter of the joint-Weibull distribution of sighting times, drew 100 samples of the same199

size as our observed sample from a distribution parameterised by the estimated shape parameter, and200

calculated the standard deviation of the samples. Note that, as is clear from Figure 1, the confidence201

intervals generated from this approach are not symmetrical; we therefore caution against the uncritical use202

of the width of the confidence intervals as an estimate of error of an estimate.203

Our approach cannot be used when all observations are made at exactly the same time, or when the204

first/last onset/cessation observations are exactly identical, so our code removes all such duplicates and205

issues a warning. When measurements were made on only two or fewer unique dates/times there can be206

no estimate of onset/end, and so our code returns an ‘NA’ value and again issues a warning.207

Finally, we note that very large samples of observations are not as informative as might be expected using208

this method, because the standard Gamma distribution upon which it is based greatly weakens the influence209

of observations far from the tail of the distribution being estimated. This makes a degree of intuitive sense:210

when estimating the onset of a process, the end of it has very little information content (and vice-versa).211

In our experience, the weakening is such that examining more than the earliest/latest 30 observations is212
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unnecessary; the influence of such values is so low that it can go beyond the numerical precision of some213

R instances and cause errors. In all analyses below, we used a maximum of the 50 earliest observations;214

concerned users can alter this using the k parameter in our code.215

Our approach vs. the first observation216

To examine our power to detect the true onset of a process, we examined type I error rates: when the217

two-tailed 95% confidence intervals of our estimate overlapped the true value of the onset of the process.218

Fifty times each, we drew n samples from a uniform distribution ranging from 0 and m across all com-219

binations of n and m, where n was 4, 5, ..., 49, 50, and m 20, 21, ..., 349, 350. We consider these ranges220

and sampling regimes to reflect the kinds of phenological data frequently used (i.e., sample size of obser-221

vations and the day of the year on which flowering was first observed). For these simulations, 0 was the222

true onset of the process: even if a sample was not drawn with a value of 0, that is the statistical limit of223

the uniform distribution from which we were sampling. When using 95% confidence intervals (α5%), we224

would typically expect an 80% chance of producing confidence intervals that encompass the true value225

(i.e., a statistical power—β—of 80%): we exceeded this expectation in 93% of parameter combinations.226

As Supplementary Figure 1 shows, the overwhelming majority of cases where we had poorer power were227

when we had fewer than ten samples (the left-hand side of the figure). We thus consider our approach to228

have high power.229

To contrast our approach with assuming the first observed value as the onset of a process, we also recorded230

the least (in our context, earliest) observation while performing the same simulations above. Supplemen-231

tary Figure 2 shows the percentage error of the estimate ( estimate
range

× 100). Note that it is impossible to232

perform a direct quantitative comparison of these two approaches: our method produces a statistical es-233

timator with an associated degree of error, while the first observation is a single observation for which234

there is no meaningful estimate of confidence. The first estimate under-estimates the onset of flowering in235

many cases; a log-unit increase or decrease of the range in the sampling results in a log-unit increase in236

the percentage error (Supplementary Figure 2). Thus as the duration of a process increases, the amount of237

sampling required to accurately estimate the true onset increases. That uncritical use of the first observa-238
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tion is biased is uncontroversial; it is well-known that the first observation of a flower in bloom is strongly239

affected by sampling effort21. Even while keeping the variance of a distribution constant, sampling it more240

times gives more opportunity for a more extreme event, by chance, to be sampled—the limits of most241

statistical distributions are infinite. Our approach, which produces a statistical estimator, can account for242

this, which is not possible when working with the first estimate.243

We also note that the accuracy of this method has been empirically verified by Clements et al. [36], who244

examined its ability to accurately detect local extinction under different sampling regimes and experimen-245

tal conditions.246

Colorado Rocky Mountains—Data247

Data are from CaraDonna et al. [19], and consist of regular surveys carried out in the Colorado Rocky248

Mountains (USA); from 1974–2012, thirty square 4m2 plots were surveyed, and the number of flowers249

counted on each individual every two days. Following CaraDonna et al.19, we restricted our analyses to250

those species for which there were records in at least half of the dataset (19 years). Estimates for each251

species were calculated for each plot within each year; if such a grouping had fewer than ten measurements252

we excluded that measurement. We excluded these measurements as we wished to model changes in253

variability, and we did not want to include less precise estimates which could inflate variation. Our power254

analyses (see above) suggested that ten samples were sufficient to estimate the onset of a process with255

reasonable confidence. We included log-transformed abundance as a factor in our analyses.256

Colorado Rocky Mountains—onset vs. peak vs. cessation257

The models presented in the Results and Discussion regress onset and cessation of flowering against258

peak (median) flowering, ignoring variation among species and abundance. To account for these factors259

following an earlier analysis of this dataset19, we fitted full linear models incorporating species’ identities260

and their interaction with year, and a separate additive effect of abundance. The model results for the shifts261

in the onset, peak, and cessation of flowering can be seen in Supplementary Tables 1, 2, and 3 respectively262

and each model had an r2adjusted greater than 74%. We then performed Deming regressions of species-263
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level changes in onset (slope=0.99, 95% CI 0.90–1.08) and cessation (slope=1.02, 95% CI 0.91–1.13)264

of flowering through time as a function of peak flowering. Deming regressions were performed using265

deming37, and account for error in estimates of change in both predictor and response variables.266

Historical comparisons of phenology267

Data were taken from Davis et al.22 and consist of herbarium records and direct field observations from268

the surroundings of Concord (Massachusetts, USA). These historical collections reflect four main peri-269

ods of sampling: records collected by Thoreau (1852–1858), Hosmer (1878, 1888–1902), Miller-Rushing270

& Primack (2003–2006), and Davis & Connolly (2011–2013)32,38. We restricted ourselves to only those271

samples collected before 1903, as this time period overlapped best with the collection of herbarium spec-272

imens, and it was the comparison between these two sets of observations that we were most interested in273

here. The herbarium data themselves were extracted from the Harvard University Herbaria (HUH), New274

York Botanical Garden’s William and Lynda Steere Herbarium (NY), Yale University Herbarium (YU),275

and University of Connecticut’s George Safford Torrey Herbarium (CONN) by Davis et al.22. A specimen276

was recorded as flowering if over 75% of its flowers were open (if multiple flowers were present in a spec-277

imen); for more details see Davis et al.22. We analysed species that were common to both datasets and that278

had (at a minimum) six dated herbarium records. We estimated the onset of flowering and its confidence279

intervals in these data as described above, and plot the results in Figure 3.280

National Phenology Network—data281

Data were downloaded from the National Phenology Network (NPN), including observations from the 1st282

of January 2001 until the 13th of February 2017 (the date of download); species functional type was set to283

‘deciduous broadleaf’, phenophase category to ‘leaves, flowers’, and data collected from the continental284

United States of America. Only events referring to flowers were retained for analysis; specifically, those285

with ‘flower’ and ‘bloom’ (but not ‘end’ or ‘pollen’) in their phenophase descriptions. Observations286

were split according to species, state, and year, and estimates of first-flower (and their standard errors)287

calculated across these groupings were the basis of analysis. Temperature and precipitation data were taken288
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from the University of East Anglia’s Climatic Research Unit high-resolution gridded historical datasets (v.289

3.24.0139), and yearly mean values for each state calculated on the basis of state outlines taken from the290

Global Administrative Areas dataset (v. 2.8; http://www.gadm.org/). Since these temperature data291

are currently only available from 1901 until 2015, we restricted our analyses to estimates of first flowering292

between the 1st of January 2005 and the 31st of December 2015.293

In the analyses presented in the Results and Discussion, we (conservatively) limited our analyses to294

species-site-year estimates with at least 5 observations, and excluded species with fewer than ten species-295

site-year estimates. This provided 1041 observations across a total of 63 species in 45 states, covering296

the period 2009–2015, and all parameter estimates from these analyses are presented in Supplementary297

Table 4. Here, we also present results from a model fit to all data from 2009–2015 (1249 observations of298

150 species in 46 states), and show that the results are qualitatively identical (Supplementary Table 5). In299

addition, because the coverage of the data is markedly increased after 2009 (see Figure 4), we fit models300

to data collected from 2001–2015. Results from 2001–2015 data limited to species-site-year estimates301

with at least 5 observations and excluding species with fewer than ten species-site-year estimates (1119302

observations of 63 species in 45 states) are given in Supplementary Table 6. Results from all data from303

2001–2015 (1327 observations of 150 species in 46 states) are given in Supplementary Table 7. All year,304

temperature, precipitation, longitude (of state centroid), and latitude (also of state centroid) data were305

scaled to have a mean of zero and standard deviation of one to make model coefficients directly compa-306

rable [following 26]. Model coefficients were back-transformed to their original scales in the Results and307

Discussion, but not in the Supplementary Tables.308

National Phenology Network—Hierarchical modelling309

We computed our model using rstan40 in each dataset, running a total of 16 chains for 20,000 iterations,310

sampling every 50 iterations and discarding the first 10,000 iterations as burn-in. All models were checked311

graphically for convergence and mixing, and r̂ values were all equal to 1. In the Results and Discussion312

we report that it is twice as likely that the variation in the date of first flower is increasing through time313

than it is not (i.e., that εβ > 0; see below for definitions); we base this upon the observation that 66.67%314
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of the posterior distribution of εβ was greater than 0.315

In Figure 4 we show for reference points from 2001–2008 that were not used to fit models to data. Visual316

posterior predictive checks were also performed on all model results to ensure model validity. We draw the317

reader’s attention to the greater support for our main result (increased variance through time as measured318

with the parameter εβ; see below) in the model fitted to the longer time series (Supplementary Table 6);319

we consider it more conservative, and so preferable, to present the more modest coefficients in the main320

text of the manuscript.321

The general structure of our model is described in the Results and Discussion; here we present it more322

formally. Specifically, the higher-level structure of the model is as follows:323

DOY ∼ N(α0 + µspp + µenv + µspace + µspace−time, ε) (1)

WhereDOY is the estimated ‘Day of Year’ of first flower and α0 is the overall first flowering date. For ease324

of presentation, we have grouped the model parameters together: the terms µspp and µenv describe species’325

and environmental effects, µspace and µspace−time account for spatial and temporal auto-correlation, and ε326

describes changes in the variance of DOY through time. We describe each below.327

Species-specific changes through time, µspp, is defined as:328

µspp = αi + β0.Y ear + βi.Y ear (2)

where αi is the difference from the overall mean (α0) for each species (i), Y ear is the year of an observa-329

tion, β0 is the slope of the overall change in DOY through time, and βi is the difference in that slope for330

each species.331

Environmental determinants of DOY , µenv, is defined as:332

µenv = τ.Tempj,k + π.Precipj,k (3)

19



where τ quantifies the effect of the mean yearly temperature (Tempj,k) of an observation’s state (j) in a333

given year (k), and π the effect of the mean yearly precipitation (Precipj,k) of an observation’s state in a334

given year.335

Each state’s residual variation in DOY , both overall (µspace) and through time (µspace−time) are expressed336

similarly. µstate is defined as:337

µstate = αj + xα.Longj + yα.Latj + zα.Longj.Latj (4)

where αj is the difference from the overall mean (µ0) for each state, and xα and yα measure variation in338

DOY longitudinally (Longj) and latitudinally (Latj), respectively. zα captures the interaction of latitude339

and longitude. Note that each state’s (j) latitude and longitude is measured as the centroid of a state, as340

described above. The influence of each state may also vary through time, as captured in the definition of341

µspace−time:342

µspace−time = Y ear.(βj + xβ.Longj + yβ.Latj + zβ.Longj.Latj) (5)

where βj is the difference from the overall change through time (β0) for each state, and xβ and yβ measure343

variation in DOY longitudinally and latitudinally through time, respectively. zβ captures the interaction344

of latitude and longitude through time.345

Finally, but importantly, the term ε measures the overall variance of DOY :346

ε = ε0 + βε.Y ear (6)

where ε0 is the overall variance (error) in our data, and βε is the change in that variance through time.347

The species-specific parameters were drawn from prior distributions centred at 0 with estimated variances.348

Specifically:349
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αi ∼ Normal(0, σαi
) (7)

350

αj ∼ Normal(0, σαj
) (8)

351

βi ∼ Normal(0, σβi) (9)
352

βj ∼ Normal(0, σβj) (10)

Other parameters were given Normal priors with wide distributions so as to be uninformative, specifi-353

cally:354

α0, βo, x, y, z, xβ, yβ, zβ ∼ Normal(0, 1000) (11)

With the exception of the variance parameters, for which our priors were:355

ε0, σαi
, σαj

, σβi , σβj ∼ Uniform(0.0001, Infinity) (12)
356

εβ ∼ Uniform(−10, 10) (13)

Colorado Rocky Mountains—hierarchical modelling357

Within the Results and Discussion, we refer to a hierarchical model of the onset of species’ flowering358

times in the Rocky Mountain dataset, which we describe here in full.359

We computed our model using rstan40 in each dataset, running a total of 16 chains for 20,000 iterations,360

sampling every 50 iterations and discarding the first 10,000 iterations as burn-in. All models were checked361

graphically for convergence and mixing, and r̂ values were all equal to 1.362

The structure of our model, which is comparable to that of the NPN model above, is as follows:363

DOY ∼ N(αi + βi.Y ear + γ.Abundance, ε0 + εβ.Y ear) (14)
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Where DOY is the estimated ‘Day of Year’ of first flower, αi the mean DOY for each species (i), βi the364

slope of yearly change of DOY for each species, γ a slope accounting for abundance-driven changes, ε0365

the mean variance of DOY , and εβ the rate of change of variance through time. Y ear and Abundance366

represent the recorded year and abundance of species within each plot, respectively. These terms are367

similar to those used for the NPN model (described above).368

αi and βi are species-specific parameters, and are drawn from distributions parameterised as follows:369

αi ∼ Normal(α0, σαi
) (15)

370

βi ∼ Normal(β0, σβi) (16)

Most parameters were given Normal priors with wide distributions so as to be uninformative, specifi-371

cally:372

α0, β0, γ0, ε0, εβ ∼ Normal(0, 1000) (17)

The only exceptions to this were our hyper-parameters of variance, for which such priors would be inap-373

propriate (negative variances are impossible). Our hyper-parameter priors were:374

σαi
, σβi , ε0 ∼ Uniform(0.0001, Infinity) (18)

All parameter estimates from this model are given in Supplementary Table 8. In the manuscript we refer375

to evidence that the variance in the onset of flowering in the Rocky Mountain dataset has been increasing376

through time: this is supported by the estimates of εβ in Supplementary Table 8, whose high-credibility377

intervals (and standard errors and deviations) suggest a positive (non-zero) change through time. In the378

Results and Discussion we report a 99.15% probability that the variation in the date of first flower is379

increasing through time (i.e., that εβ > 0); we base this upon the observation that 99.15% of the posterior380

distribution of εβ was greater than 0.381
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Variation among species in flowering time382

There is growing evidence that early-flowering species are changing their phenology more strongly in re-383

sponse to climate change. One of the advantages of our hierarchical approach is it permits the examination384

of variation among species’ responses, while propagating uncertainty for each species’ response through385

into the final analysis. In Supplementary Figures 3 and 4, we plot the species-level changes in flowering386

phenology through time as a function of overall first-flower data for both the Rocky Mountain and NPN387

data, respectively. We provide these data as a test of the overall validity of our approach, and note that the388

Rocky Mountain data show some support for two kinds of flowering regime (early vs. late).389

Data availability390

All the data we have analysed are publicly available at the references we provide above. The Colorado391

data are archived through the Open Science Framework at https://osf.io/jt4n5/392
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