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Abstract. Niche differences are key to understanding the distribution and structure of biodiver-
sity. To examine niche differences, we must first characterize how species occupy niche space, and two
approaches are commonly used in the ecological literature. The first uses species traits to estimate mul-
tivariate trait space (so-called functional trait diversity, FD); the second quantifies the amount of time
or evolutionary history captured by a group of species (phylogenetic diversity, PD). It is often—but
controversially—assumed that these putative measures of niche space are at a minimum correlated
and perhaps redundant, since more evolutionary time allows for greater accumulation of trait changes.
This theoretical expectation remains surprisingly poorly evaluated, particularly in the context of multi-
variate measures of trait diversity. We evaluated the relationship between phylogenetic diversity and
trait diversity using analytical and simulation-based methods across common models of trait evolu-
tion. We show that PD correlates with FD increasingly strongly as more traits are included in the FD
measure. Our results indicate that phylogenetic diversity can be a useful surrogate for high-dimen-
sional trait diversity, but we also show that the correlation weakens when the underlying process of
trait evolution includes variation in rate and optima.
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INTRODUCTION

Essential to much of ecological theory and analysis is the
niche concept, and particularly the ecological implications of
niche differences among species (Grinnell 1924, Elton 1927,
Hutchinson 1961, Chesson 2000, Chase and Leibold 2003).
However, measuring the niche space occupied by a group of
species directly has proven conceptually and methodologi-
cally difficult, in part due to the recognition that species’
niches vary across many (frequently difficult to measure and
identify) dimensions delineating the conditions under which
an organism can grow, survive, and reproduce (Hutchinson
1961, Garnier et al. 2016). Two prominent approaches
attempt to overcome this difficulty by estimating niche char-
acteristics either using species’ traits (McGill et al. 2006), or
using the distances associated with species on a phylogenetic
tree (Webb et al. 2002). Both approaches can account for the
multidimensionality of the niche: trait-based estimates can
incorporate multiple trait measurements assumed to be rele-
vant to niche axes (McGill et al. 2006, Violle and Jiang
2009), while phylogenetic distances should reflect the accu-
mulation of many types of evolved differences among species.
More specifically, if some traits can be used as proxies for
measuring performance (growth, survival, reproduction)

along relevant environmental gradients, then they should
provide information about species’ niches (McGill et al.
2006, Violle and Jiang 2009, Garnier et al. 2016). Intuitively,
if these traits evolve steadily through time, then the evolution-
ary relationships among species produced by the patterns of
branching on a phylogenetic tree should produce comparable
estimates of niche space to those obtained using traits. That
logic underlies the use of phylogenetic measures to estimate
niche space and differences in the absence of appropriate trait
data (Kraft et al. 2007).
A wide range of analyses have considered the total evolu-

tionary history in a set of taxa (phylogenetic diversity, PD),
as measured by PDFaith [the sum of the branch lengths of a
phylogenetic tree (Faith 1992)] and various derived pairwise
metrics, to understand the spatial distribution (Davies and
Buckley 2011, Meynard et al. 2011), structure (Kraft et al.
2007), and function (Cadotte et al. 2008) of communities
(Helmus et al. 2010), ecosystems (Flynn et al. 2011, Srivas-
tava et al. 2012), and regional species pools (Kembel and
Hubbell 2006), implicitly or explicitly treating PD as a proxy
for unmeasured trait diversity. As species in an assemblage
are more distantly related and encompass greater spans of
independent evolutionary time (i.e., greater PD), they
should have the opportunity to accumulate greater variation
in the ecological traits that influence where species can live
and their interactions with other species (Webb et al. 2002).
If the accumulation of such ecological trait diversity corre-
sponds with occupancy of niche space, then it follows that
the niche space occupied by a group of species is determined
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by the total amount of PD and, as a corollary, the structure
(topology and relative branch lengths) of the phylogenetic
tree. However, the assumptions underlying the PD-as-
proxy-for-trait diversity claim have frequently been chal-
lenged based on evolutionary theory (Futuyma 2010,
Cadotte et al. 2017), while empirical support is mixed (Sil-
vertown et al. 2006, Ackerly 2009, Cadotte et al. 2009,
Devictor et al. 2010, Kelly et al. 2014, Faith 2015b, Gerhold
et al. 2015 for a review, Mazel et al. 2017).
Some of the scepticism and confusion about the relation-

ship between PD and trait diversity may be because PD was
initially valued as a biodiversity measure for its perceived
ability to capture “feature diversity”, where “features” repre-
sent homologous traits (Faith 1992). Under this definition,
a strong relationship between the two measures is expected;
however this particular conceptualization is rarely applied
outside of the conservation literature (e.g., Faith 2016). Here
we define “trait diversity” more broadly to include the varia-
tion in all ecological or ‘functional’ (Violle et al. 2007)
traits, which include a wide variety of physiological, pheno-
logical, morphological, and behavioural measures, many of
which exhibit complex evolutionary trajectories. Such traits
can be related to a phylogeny via macroevolutionary models,
making this definition more appropriate for tests of niche
occupancy related to the accumulation of ecological trait
differences among species. Note we will refer to trait diver-
sity as ‘FD’ after functional diversity, for consistency with
the existing literature.
Surprisingly, the theoretical basis for treating PD as a

proxy for trait diversity has not received thorough assess-
ment in the ecological literature, relying primarily on verbal
arguments (but see Letten and Cornwell 2015, Cadotte et al.
2017). In particular, trait-based approaches to ecology
increasingly emphasize multi-dimensional measures provid-
ing estimates of species’ ecological niches (Vill�eger et al.
2008, Blonder et al. 2014). Yet we lack a clear understand-
ing of whether calculating FD using multiple traits might
influence the shape or strength of the PD-FD relationship,
as past analyses have been typically limited to one or two
traits (Kraft et al. 2007, Letten and Cornwell 2015). In addi-
tion, the tempo and mode of evolution may greatly affect
the nature and strength of the relationship (Ackerly 2009,
Futuyma 2010, Cadotte et al. 2017) but the ecological litera-
ture has primarily focussed on the expectations under Brow-
nian motion (Kraft et al. 2007, Letten and Cornwell 2015).
By evaluating the expected relationship between PD and FD
under an expanded set of evolutionary models, we can then
identify when (or if) PD should be expected to be a useful
proxy for FD in ecological analyses.
In this work, we evaluate whether the trait diversity of an

assemblage is expected to be positively related to the phylo-
genetic diversity, and ask whether trait dimensionality, the
form of evolutionary model, or evolutionary complexity
(number of parameters in the evolutionary models) alters
this relationship. We focus on the clade-wide relationship
between phylogenetic diversity and trait diversity; although
ecologists are often interested in estimating niche differences
in local communities (e.g., Helmus et al. 2010) or for choos-
ing sets of species to prioritize for conservation (Mazel et al.
2017), without first clarifying expectations for the PD-FD
relationship at the clade scale it is not possible to formulate

null expectations against which to interpret observations in
local communities. Thus, our results are applicable not just
to community ecological studies, but any study that implic-
itly or explicit relies on a strong correlation between PD and
FD. We consider evolutionary models that allow for traits to
continuously diverge over time (i.e. Brownian motion or
BM) and those that constrain trait divergence such as by
stabilizing selection (i.e., the Ornstein-Uhlenbeck model or
OU). We also provide results for more complex models that
allow for variation in the rate and optimum of trait evolu-
tion among clades, and those where rates of trait divergence
change through time (i.e., Early Burst or EB). In doing so
we hope to provide a theoretical background against which
to inform the use of PD in future ecological analyses.

METHODS

Measuring phylogenetic and trait diversity

PDFaith is calculated as the total sum of the branch
lengths on a tree (Faith 1992). We estimated FD using the
functional richness metric, which calculates the volume of
the multidimensional convex hull encompassing all ordi-
nated trait values in a set (Cornwell et al. 2006, Vill�eger
et al. 2008). This metric captures the total amount of varia-
tion in trait values, making it conceptually analogous to
PDFaith (Tucker et al. 2017). This metric is particularly com-
monly used in the ecological literature; alternative measures
of trait diversity such as functional dendrograms (Petchey
and Gaston 2006), or EDf (Faith 2015a) are also analogous
richness metrics (Pavoine and Bonsall 2011) but have been
less widely adopted. The convex hull based approach is
widely used but its limitations should be noted: values calcu-
lated with different numbers of traits or species are not
directly comparable, it is sensitive to outliers, and should
not be used when the number of traits and species are similar
(Podani 2009). We also calculated alternate metrics associ-
ated with the dimensions of divergence (traits: functional
divergence, phylogeny: MPD) and regularity (traits: func-
tional evenness, phylogeny: VPD) (Vill�eger et al. 2008,
Tucker et al. 2017).

Phylogenetic simulations

We simulated phylogenetic trees of varying size (100 each
with 16, 32, 64, or 128 tips) using the sim.bdtree function
from the R package geiger (Harmon et al. 2008) to generate
400 Yule trees. For each simulated tree, we used the
mvMORPH R package (Clavel et al. 2015) to evolve sets of
1, 2, 4, 6, 8, 10, and 12 traits along the branches of the tree
(Harmon et al. 2008). Here, we consider two common mod-
els of trait evolution (Appendix S1: Table S1).

1) Brownian Motion (BM). Sigma (r2), the rate of trait
divergence, was set to one of three different values: 0.2,
0.75, and 1.5. All traits were continuous, with an ancestral
state of 0, and simulated independently. We replicated
each combination of tree and parameter values 100 times,
producing a total of 8,400 unique trait-phylogeny sets.

2) Ornstein-Uhlenbeck (OU). Simulations used the same
set of 400 Yule trees with matching sigma values, but this
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time we also varied alpha, the strength of selection in the
OU model: alpha = 0.5, 1.0, and 2.0, producing a total
of 25,200 unique trait-phylogeny sets. This parameter
space covers conditions for which FD might decline with
trait number and increase with trait number (Appen-
dix S2). We note that OU models have been shown to be
essentially identical to models of accelerating rates of
trait evolution.

Null comparisons (star phylogenies)

It is possible that the niche space occupied by a group of n
species is related to the amount of PD, but that this relation-
ship simply reflects the number of species and their ages,
rather than the specific ancestral relationships between the
species in that group. We can estimate the degree to which
the relationship between PD and FD might depend on this
phylogenetic structure by comparison to null (star) phyloge-
nies. The star phylogenies were constrained to have the same
number of tips as those from the Yule trees, and the same
total PD, but no internal phylogenetic structure. Traits were
simulated for BM and OU models (parameter values shown
in Appendix S1: Table S1). We simulated 30 replicates of
each unique trait-tree combination (resulting in 2,520 trait-
phylogeny sets under BM and 7,560 under OU). Because all
species are equidistant on the star trees, all species evolve
independently, and these simulations therefore provide a null
expectation for the relationship between PD and FD for a
given tree size and model of evolution.

Describing the relationship between PD and FD

FD values for each combination of tree size (i.e., number
of taxa) and trait number were rescaled by their maximum
FD value (final values between 0 and 1) to facilitate appropri-
ate comparisons of the FD metric. We described the relation-
ship between PD and FD in two ways. First, we calculated
the Spearman rank correlation between the two variables, a
commonly reported test statistic in the literature. Second, we
more precisely describe the shape of the relationship between
PD and FD by fitting non-linear least squares models to the
simulated data (nls function in R), using the analytical expec-
tations detailed in Appendix S2 to inform the shape of that
relationship. For data generated across all BM simulations,
an exponential growth model provided the best fit:

FD� ae1�bPD (1)

where a reflects the intercept, and b the slope or rate at
which FD accumulates with increasing PD (See Kelly et al.
[2014] for a similar approach). For data generated across all
OU simulations, a logistic model provided the best fit:

FD� a þ b ln PD (2)

where b is the slope or rate at which FD accumulates with
increasing PD, and a is the intercept. We used these models
to ask how well variability in FD is explained by PD, how
the number of traits alters the shape of the relationship
between PD and FD, and compare these to the null

expectations found by fitting the same models to the data
from the star trees.

More complex models of trait evolution

We additionally explored more complex models of trait
evolution using the OUwie R package (Beaulieu and
O’Meara 2014) to ask how the relationship between PD and
FD is affected when different parts of a phylogeny experi-
ence different parameters of trait evolution. For the same
set of phylogenetic trees described above, we identified two
monophyletic partitions in the taxa: we first identified a
bifurcation that roughly split the phylogeny into two similar
sized clades, and varied the model of evolution between
these sections. We then simulated scenarios in which (1) trait
evolution occurs via BM, but sigma differs between two sec-
tions of the tree; (2) trait evolution occurs via OU but the
optimal trait value (theta) varies between the two sections;
(3) as in (2) but with both theta and sigma varying between
the two sections; (4) trait evolution varies in terms of both
theta and alpha between two sections; and (5) theta, alpha
and sigma all vary between the two sections of the tree (see
Appendix S1: Table S2 for parameter values used). Finally,
we simulated an Early Burst (EB) model, on the same set of
400 Yule trees with matching sigma values as for the BM
and OU simulations, but this time also varying beta, the
exponential rate of decay: beta = 0.5, 1.0, and 2.0, produc-
ing an additional total of 25,200 unique trait-phylogeny
sets. Because parameter space rapidly becomes vast, we
necessarily limited our exploration to ensure reasonable
computing time.

RESULTS

Across the many simulated trees and traits, the relation-
ship between PD and FD under BM was positive and mono-
tonic, while under OU the relationship was positive and
saturating. For both models of trait evolution, the relation-
ship between PD and FD tended to increase as more traits
were included in FD (Table 1, Fig. 1 insets). The null star
trees had comparatively lower correlations between PD and
FD (Table 1). We show here the results from the largest phy-
logenies (128 taxa); results were qualitatively similar for the
smaller phylogenies (Appendix S1: Figs. S1–S6), but unsur-
prisingly became more variable as trees decreased in size.
We used non-linear least squares models to estimate the

rate at which FD is accumulated (i.e., the slope of the rela-
tionship given by b in Eq. 1 and 2), and measured the total
variation (R2) explained by this relationship. As more traits
were included, the slope parameter increased, suggesting the
shape of the relationship between PD and FD depends on
how many traits are being considered (Fig. 1a,b, main
plots). For BM simulations, when only 1 or 2 traits were
used to calculate FD, the relationship was close to linear,
but became increasingly exponential with 4 or more traits
(Fig. 1a, panels). For OU simulations the relationship
between PD and FD changed from linear to saturating as
more traits were included (Fig. 1b, panels). Finally, the total
variation in FD explained by PD also depended strongly on
the number of traits (Fig. 2). The R2 improves rapidly with
the addition of traits until approximately four traits.
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TABLE 1. Spearman’s rank correlations between PD and FD, for each simulation scenario: BM and OU models of trait evolution, star tree
(null) results, and multi-rate, multi-optima models (Scenarios 1–5, see Methods for details).

Model 1 trait 2 traits 4 traits 6 traits 8 traits 10 traits 12 traits

BM 0.355 0.528 0.711 0.736 0.767 0.730 0.700
BM star tree �0.028 0.094 �0.054 0.141 0.101 �0.055 0.105
OU 0.230 0.457 0.681 0.754 0.789 0.784 0.774
OU star tree 0.063 �0.032 0.070 �0.063 �0.075 �0.088 0.0322
Scenario 1 0.340 0.501 0.680 0.753 0.776 0.876 n/a
Scenario 2 0.211 0.299 0.370 0.389 0.435 0.461 n/a
Scenario 3 0.235 0.278 0.341 0.381 0.416 0.438 n/a
Scenario 4 0.249 0.351 0.422 0.469 0.489 0.496 n/a
Scenario 5 0.246 0.325 0.399 0.443 0.469 0.477 n/a
EB 0.274 0.418 0.404 0.343 0.324 0.297 0.234
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FIG. 1. The strength of the relationship between phylogenetic diversity (PD) and trait diversity (FD), across all simulations under the
(a) Brownian motion and (b) Ornstein-Uhlenbeck models of trait evolution. In each panel, the main plot shows the estimated slope (b in Eqs. 1
and 2) by which FD increases per unit of PD (or log(PD) for OU) in relationship to the number of traits. Surrounding plots show the raw data,
and illustrate the change in the shape of the relationship between PD and FD for 1, 4, 8, or 12 traits. In each, note that FD is scaled relative to
the maximum FD value, with scaling done separately for each combination of trait number, tree size, and model of evolution.
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However, PD always captures far greater variation in FD
than the null expectation.
Outcomes from simulations of trait evolution with multiple

rates or optima were generally similar in terms of the shape
of the relationship between PD and FD to those seen under
single-rate models (Appendix S1: Fig. S7) but weaker
(Table 1), reflecting the greater variation in FD generated
under these more complex models. The strength of the rela-
tionship (R2) between PD and FD calculated based on fitted
Eqs. 1 and 2 was typically similar (BM) or weaker (OU) than
that calculated for the single-rate simulations (Appendix S1:
Fig. S7). The slope of the relationship between PD and FD
also generally increased with trait number, though this rela-
tionship was weaker for the multi-optima/multi-rate OU
models compared to the single-rate OU. Results from the EB
simulations were the exception, for which the relationship
between PD and FD was neither strong nor monotonic (see
Table 1 and Appendix S1: Fig. S8).

DISCUSSION

Phylogenetic diversity has frequently been used as a surro-
gate for trait diversity in ecological analyses. Surprisingly,
however, the expected relationship between multi-dimen-
sional trait diversity and phylogenetic diversity has not been
well described, despite the common practice of using multi-
ple traits to estimate FD. Here, we used numerical simula-
tions to explore how trait dimensionality alters the
relationship between PD and FD, assuming either a Brown-
ian motion or Ornstein-Uhlenbeck model of evolution. We
show that the strength and shape of the PD-FD relationship
is tied to trait dimensionality. PD correlates relatively poorly
with FD when estimated using only a single trait, although
a single trait still performed better than our null expectation
(star trees). This result is realized on a large phylogeny (128
taxa) with many replicates, but the relationship between PD
and FD will be weaker and more variable for smaller

phylogenies (e.g., Appendix S1: Fig. S5). It is not surprising
that studies using PD as a proxy for single traits are there-
fore liable to find weak or null results, irrespective of the true
underlying process (Letten and Cornwell 2015, Cadotte
et al. 2017). For example, studies on character displacement
may find misleading results since they frequently focus on
single traits (Dayan and Simberloff 2005), and phylogenetic
diversity is likely a poor surrogate for variation in a single
trait (and a single trait likely a poor estimator of niche occu-
pancy). However, with increasing numbers of traits, PD cor-
relates increasingly strongly and positively with FD. In cases
where many traits affect ecological processes, such as spe-
cies’ coexistence (Kraft et al. 2015), PD is a potentially use-
ful tool with which to estimate trait diversity, particularly in
the absence of trait data. This does not mean that PD is an
effective surrogate for missing traits (although it might be),
but rather that it is effective in the absence of trait data at
estimating multidimensional differences between species, at
least for commonly assumed models of evolution.
This surrogacy value of phylogenetic diversity arises when

the phylogenetic structure captures an assemblage’s evolution-
ary history. In contrast, although the null phylogenies contained
the same total amount of evolutionary history, they provided
no information about the relative trait differences among spe-
cies and so provided no information on trait diversity. The rela-
tive proportions of shared and unshared branch lengths on a
phylogeny contribute importantly to the expected trait diversity
of a group of species. This was true for the common single rate
models of trait evolution we considered, BM and OU. Compar-
isons of evolutionary models fit to observed trait values most
often find support for OU and BM, with support for models
such as ‘early burst’ (EB) being much less common (Harmon
et al. 2010, Pennell et al. 2015). Thus, at least for these simple
models (see below for discussion of more complex scenarios), it
is reasonable to assume that PD and multidimensional mea-
sures of FD should represent similar information about the
extent of relative differences among a set of taxa.
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FIG. 2. The explained variance (R2) associated with the models described in Eqs. 1 and 2 for (a) Brownian motion and (b) Ornstein-Uhlen-
beck, relating FD and PD for each number of traits. Solid lines show simulation result. Dashed lines show the comparable variance in FD
explained by PD for a null scenario where individuals evolve independently along star trees with the same total PD. Error bars show standard
deviations in R2 values for 10,000 cross-validations in which 25% of the total data was omitted and the model refit to the remaining data.
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While our results imply that the relationship between PD
and FD can be a useful tool for ecologists, recent papers
have highlighted the varying strength of observed relation-
ships between measures of trait diversity and phylogenetic
diversity (see discussion in Cadotte et al. 2017). A strong
relationship may not be the case when increasingly complex
models of trait evolution (Appendix S1: Fig. S7) are rele-
vant, although multi-rate BM maintained a strong correla-
tion between PD and FD. Kelly et al. (2014) found a weak
relationship between PD and FD, in part because they
included a large number of traits with discrete character
states for which (unlike the continuous data we examine
here) saturation in state changes tend to quickly mask the
PD-FD relationship. Others have argued that the combina-
tion of traits can cause the masking of phylogenetic struc-
ture; our results support this intuition (Murrell 2017). In
addition, as species pools are sorted into local communities,
the relationship between PD and FD may change greatly.
For example, even in the absence of ecological processes,
subsets of a clade can have a much different relationship
between PD and FD than that observed at the clade scale
(Mazel et al. 2017). Here we attempt to establish a baseline
expectation for the strength and shape of the PD-FD rela-
tionship at the clade-level, against which observed relation-
ships can be appropriately compared.
A higher amount of trait diversity is often assumed to

indicate greater separation in niche space, as long as differ-
ences in trait values correspond to different positions along
a niche axis (Violle and Jiang 2009, Garnier et al. 2016).
When this assumption holds, FD and PD should provide
related information regarding occupancy of niche space.
This is most likely when traits contribute equally to ecologi-
cal differences and trait values directly relate to niche axes.
However, ecologically relevant traits are frequently complex.
They may represent the products of suites of co-evolving
traits (e.g., leaf mass per unit area) and measures of FD may
include traits with differing complexities. Some traits more
directly relate to niche axes than others – for example, mea-
sures of height or root depth in plants are frequently linked
to niche differentiation or limiting similarity to minimize
competitive interactions (Garnier et al. 2016). Other traits,
such as nutrient ratios in plant tissues, may be less directly
related to niche axes. However, in concert with other traits
as a result of tradeoffs and constraints, they can contribute
to life history axes that are related to niche differences
(Wright et al. 2004, Reich 2014, D�ıaz et al. 2016). Other
traits may contribute little—directly or indirectly—to eco-
logical differences (Shipley et al. 2016)—in which case both
FD and PD will be poor estimates of niche space. Finally,
ecological responses of interest such as competitive intensity
(Mayfield and Levine 2010) or ecological complementarity
(Cardinale et al. 2012) may be poorly captured by measures
of trait diversity.
Although categorizing relevant niche axes remains elusive,

recent work indicates that multiple traits are necessary to
describe a species’ ecological niche (Laughlin 2014), and at
a global scale, D�ıaz et al. (2016) found that two axes repre-
senting six traits were needed to capture the major variation
in structure and function across plant groups. It is reassur-
ing that concordance between measures of PD and FD
increases when calculated at with multiple traits. However,

further work formally connecting traits and the niche con-
cept, and considering the connections between these and the
environment remains necessary. The relationship between
niche space and other dimensions of trait and phylogenetic
diversity are even less clear, and supplementary results sug-
gest that when considering measures of evenness or diver-
gence, trait and phylogenetic facets may not correspond
(Appendix S1: Figs. S9–S10) due to sensitivity of these
dimensions to phylogenetic topology and the model of trait
evolution. The key challenge for the future then is to better
understand how ecologically relevant traits match to the
assumed models of evolution, and how ecological processes
map onto both PD and FD.
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