344 research outputs found

    Investigating the impact of combining handwritten signature and keyboard keystroke dynamics for gender prediction

    Get PDF
    © 2019 IEEE. The use of soft-biometric data as an auxiliary tool on user identification is already well known. Gender, handorientation and emotional state are some examples which can be called soft-biometrics. These soft-biometric data can be predicted directly from the biometric templates. It is very common to find researches using physiological modalities for soft-biometric prediction, but behavioural biometric is often not well explored for this context. Among the behavioural biometric modalities, keystroke dynamics and handwriting signature have been widely explored for user identification, including some soft-biometric predictions. However, in these modalities, the soft-biometric prediction is usually done in an individual way. In order to fill this space, this study aims to investigate whether the combination of those two biometric modalities can impact the performance of a soft-biometric data, gender prediction. The main aim is to assess the impact of combining data from two different biometric sources in gender prediction. Our findings indicated gains in terms of performance for gender prediction when combining these two biometric modalities, when compared to the individual ones

    Inclusion Complex Of S(-) Bupivacaine And 2-hydroxypropyl- β-cyclodextrin: Study Of Morphology And Cytotoxicity

    Get PDF
    Local anesthetics (LA) belong to a class of pharmacological compounds that attenuate or eliminate pain by binding to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nerve impulse. S (-) bupivacaine (S(-) bvc) is a local anesthetic of amino-amide type, widely used in surgery and obstetrics for sustained peripheral and central nerve blockade. This article focuses on the characterization of an inclusion complex of S(-) bvc in 2-hydroxypropyl-β-cyclodextrin (HP-β-CD). Differential scanning calorimetry, scanning electron microscopy and X-Ray diffraction analysis showed structural changes in the complex. In preliminary toxicity studies, the cell viability tests revealed that the inclusion complex decreased the toxic effect (p<0.001) produced by S(-) bvc. These results suggest that the S(-) bvc:HP-β-CD inclusion complex represents a promising agent for the treatment of regional pain.273207212Araújo, D.R., Cereda, C.M., Brunetto, G.B., Pinto, L.M.A., Santana, M.H., de Paula, E., Encapsulation of mepivacaine prolongs the analgesia provided by sciatic nerve blockade in mice (2004) Can J Anaesth, 51, pp. 566-572Araújo, D.R., Fraceto, L.F., Braga, A.F.A., de Paula, E., Drug-delivery systems for racemic bupivacaine (S50-R50) and bupivacaine enantiomeric mixture (S75-R25):cyclodextrins complexation effects on sciatic nerve blockade in mice (2005) Rev Bras Anestesiol, 55, pp. 316-328Araújo, D.R., Moraes, C.M., Fraceto, L.F., Braga, A.F.A., de Paula, E., Cyclodextrin-bupivacaine enantiomeric mixture (S75-R25) inclusion complex and intrathecal anesthesia in rats (2006) Rev Bras Anestesiol, 56, pp. 495-506Bibby, D., Davies, N.M., Tueker, I.G., Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems (2000) Int J Pharm, 197, pp. 1-11Covino, B.G., Vassalo, H.G., (1976) Local anesthetics: Mechanisms of action and clinical use, , New York: Grune and Stratton;, 255pFoster, R.H., Markham, A., Levobupivacaine. A review of its pharmacology and use as a local anaesthetic (2000) Drugs, 59, pp. 551-579Grant, G.J., Bansinath, M., Liposomal delivery systems for local anesthetics (2001) Reg Anesth Pain Med, 26, pp. 61-63Gristwood, R.W., Cardiac and CNS toxicity of levobupivacaine: Strengths of evidence for advantage over bupivacaine (2002) Drug Saf, 25, pp. 153-163Hirayama, F., Uekama, K., Cyclodextrin-based controlled drug release system (1999) Adv Drug Deliv Rev, 36, pp. 125-141Huang, Y.F., Pryor, M.E., Mather, L.E., Veering, B.T., Cardiovascular and central nervous system effects of intravenous S-bupivacaine and bupivacaine in sheep (1998) Anesth Analg, 86, pp. 797-804Jong, R.H., (1994) Local anesthetics, , Springfield: CC. Thomas;, 325pKohata, S., Jyodi, K., Ohyoshi, A., Thermal decomposition of cyclodextrins (α -, β-, γ, and modified β-CyD) and of metal-(β-CyD) complex in the solid phase (1993) Thermochim Acta, 217, pp. 187-198Loftsson, T., Brewster, M.E., Pharmaceutical application of Cyclodextrin. 1. Drug solubilization and stabilization (1996) J Pharm Sci, 85, pp. 1017-1025Loukas, Y.L., Vraka, V., Gregoriadis, G., Novel non-acidic formulations of haloperidol complexed with beta-cyclodextrin derivatives (1997) J Pharm Biomed Anal, 16, pp. 263-268Mather, L.E., McCall, P., McNicol, P.L., Bupivacaine enantiomer pharmacokinetics after intercostal neural blockade in liver transplant patients (1995) Anesth Analg, 80, pp. 328-335Michaud, M., Icart, S., Determination of the substitution of hydroxypropylbetadex using fourier transform infrared spectrophotometry (2001) PharmEuropa, 13, pp. 714-716Naidu, N.B., Chowdary, K.P.R., Murthy, K.V.R., Satyanarayana, V., Hayman, A.R., Becket, G., Physicochemical characterization and dissolution properties of meloxicam-cyclodextrin binary systems (2004) J Pharm Biomed Anal, 35, pp. 75-86Pinto, L.M.A., Fraceto, L.F., Santana, M.H.A., Pertinhez, T.A., Oyama, S., de Paula, E., Physico-chemical characterization of benzocaine-β-cyclodextrin inclusion complexes (2005) J Pharm Biomed Anal, 39, pp. 956-963Ren, X., Xue, Y., Liu, J., Zhang, K., Zheng, J., Lou, G., Gou, C., Shen, J., A novel cyclodextrin-deri ved tellurium compound with glutathione peroxidase (2002) Chembiochem, 3, pp. 363-365Rose, J.S., Neal, J.M., Kopacz, D.J., Extended-duration analgesia: Update on microspheres and liposomes (2005) Reg Anesth Pain Med, 30, pp. 275-285Strichartz, G.R., Ritchie, J.M., (1987) Local anesthetics: Handbook of experimental pharmacology, , Berlin: Springer-Verlag;, 445pThompson, D.O., Cyclodextrin-enabling excipients: Their present and future use in pharmaceuticals (1997) Crit Rev Ther Drug Carrier Syst, 14, pp. 1-10

    A pre formulation study of tetracaine loaded in optimized nanostructured lipid carriers

    Get PDF
    Tetracaine TTC is a local anesthetic broadly used for topical and spinal blockade, despite its systemic toxicity. Encapsulation in nanostructured lipid carriers NLC may prolong TTC delivery at the site of injection, reducing such toxicity. This work reports the development of NLC loading 4 TTC. Structural properties and encapsulation efficiency EE amp; 8201; gt; amp; 8201;63 guided the selection of three pre formulations of different lipid composition, through a 23 factorial design of experiments DOE . DLS and TEM analyses revealed average sizes 193 220 nm , polydispersity lt; amp; 8201;0.2 , zeta potential amp; 8722; amp; 8201;21.8 to amp; 8722; amp; 8201;30.1 mV and spherical shape of the nanoparticles, while FTIR ATR, NTA, DSC, XRD and SANS provided details on their structure and physicochemical stability over time. Interestingly, one optimized pre formulation CP TRANS TTC showed phase separation after 4 months, as predicted by Raman imaging that detected lack of miscibility between its solid cetyl palmitate and liquid Transcutol lipids. SANS analyses identified lamellar arrangements inside such nanoparticles, the thickness of the lamellae been decreased by TTC. As a result of this combined approach DOE and biophysical techniques two optimized pre formulations were rationally selected, both with great potential as drug delivery systems, extending the release of the anesthetic gt; amp; 8201;48 h and reducing TTC cytotoxicity against Balb c 3T3 cell

    Measurement of the Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2β\beta measurement from B0J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0J/ψKS0)=(1.83±0.28)×105BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays

    Get PDF
    A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    Search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓

    Get PDF
    A search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0  fb-1 of pp collisions at √s=7  TeV, collected by the LHCb experiment. The observed number of Bs0→e±μ∓ and B0→e±μ∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±μ∓)101  TeV/c2 and MLQ(B0→e±μ∓)>126  TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1 of pp collision data collected by the LHCb experiment at a centre-of-mass energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the first uncertainty is statistical, the second is the experimental systematic uncertainty and the third is associated with the ratio of fragmentation fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x 10^{-5}. The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/- 0.9(syst.))%. Both measurements are the most precise to date and are in agreement with the previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table

    Evidence for the strangeness-changing weak decay ΞbΛb0π\Xi_b^-\to\Lambda_b^0\pi^-

    Get PDF
    Using a pppp collision data sample corresponding to an integrated luminosity of 3.0~fb1^{-1}, collected by the LHCb detector, we present the first search for the strangeness-changing weak decay ΞbΛb0π\Xi_b^-\to\Lambda_b^0\pi^-. No bb hadron decay of this type has been seen before. A signal for this decay, corresponding to a significance of 3.2 standard deviations, is reported. The relative rate is measured to be fΞbfΛb0B(ΞbΛb0π)=(5.7±1.80.9+0.8)×104{{f_{\Xi_b^-}}\over{f_{\Lambda_b^0}}}{\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) = (5.7\pm1.8^{+0.8}_{-0.9})\times10^{-4}, where fΞbf_{\Xi_b^-} and fΛb0f_{\Lambda_b^0} are the bΞbb\to\Xi_b^- and bΛb0b\to\Lambda_b^0 fragmentation fractions, and B(ΞbΛb0π){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) is the branching fraction. Assuming fΞb/fΛb0f_{\Xi_b^-}/f_{\Lambda_b^0} is bounded between 0.1 and 0.3, the branching fraction B(ΞbΛb0π){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) would lie in the range from (0.57±0.21)%(0.57\pm0.21)\% to (0.19±0.07)%(0.19\pm0.07)\%.Comment: 7 pages, 2 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
    corecore