253 research outputs found

    Executive budget success: Evidence from the American states.

    Get PDF
    Budgeting is among the executive's most important powers in a separated political system. The extent to which executive budget proposals are adopted by the legislature is an important measure of the executive's political success. Scholarly literature on budgeting has emphasized how budgets are created but study of executive budget success and its causes is relatively rare. This work seeks to better understand success and the reasons it is achieved through an analysis of the 50 American states for a complete budget cycle. This approach advances the study of budget success by using multiple methods, including measuring success by major issue as well as agency budgets. A survey of budget participants revealed that governors were more successful with partisan support in the legislature, early in their terms, and in a biennial budget cycle. Respondents rated economic conditions, clearly stating and advocating an agenda, and offering popular issues the most important factors contributing to executive budget success. Quantitative analyses revealed that governors were more likely to achieve budget goals with a less professional legislature, legislative term limits, party support in the legislature, biennial budgeting, popular support, and earlier in their terms. Taken together, all analyses suggest that the most important factor in executive budget success is the time in service, followed by partisan support in the legislature, an institutionally weak legislature, biennial budgets, popular support, control over a strong executive budget office, a weak economy, and when proposing large budget increases

    Aspects of the biology and behaviour of Lernaeocera branchialis (Linnaeus, 1767) (Copepoda: Pennellidae)

    Get PDF
    Lernaeocera branchialis (L., 1767) is a parasitic copepod that parasitises a range of gadoids by anchoring in the proximity of the branchial chamber of its host, deriving nutrition from the blood of its host and causing serious pathogenic effects. This study investigates the taxonomy of the juvenile free-swimming stages and host location behaviour in the pre-metamorphosed adult female. The large size and distinctive appearance of the metamorphosed adult female stage, coupled with the wide exploitation and commercial importance of one of its principle final gadoid hosts, the cod (Gadus morhua L.), means that this species has long been recognised in the scientific literature, and here the extensive literature concerning this potentially important and damaging pathogen is re-examined to provide an up to date overview, which includes both aquaculture and wild fisheries perspectives. Due to disagreements between several descriptions of the L. branchialis juvenile stages, and because the majority of the descriptions are over 60 years old, the juvenile free-swimming stages are re-described, using current terminology and a combination of both light and confocal microscopy. The time of hatching and moults in these stages is also examined. Techniques for the automated creation of taxonomic drawings from confocal images using computer software are investigated and the possibilities and implications of this technique are discussed. The method of host location in L. branchialis is unknown but is likely to involve a variety of mechanisms, possibly including chemo-reception, mechano-reception and the use of physical phenomena in the water column, such as haloclines and thermoclines, to search for fish hosts. In this study the role of host-associated chemical cues in host location by adult female L. branchialis is investigated by analysing the parasites behavioural responses to a range of host-derived cues, in both a choice chamber and a 3D tracking arena. To analyse the data from the experiments, specialised computer software (“Paratrack”) was developed to digitise the paths of the parasites’ movements, and calculate a variety of behavioural parameters, allowing behaviour patterns to be identified and compared. The results show that L. branchialis responds to host-associated chemical cues in a similar way to many copepods in the presence of chemical cues. Of the different cues tested, gadoid conditioned water appears to be most attractive to the parasites, although the wide variation in behavioural responses may indicate that other mechanisms are also required for host location. The different behavioural responses of parasites to whiting (Merlangius merlangus L.) and cod (Gadus morhua) conditioned water, which are both definitive hosts, provide some evidence for sub-speciation in L. branchialis. The role of chemical cues in host location of L. branchialis, and the relative importance of chemical and physical cues in host location are discussed. As well as demonstrating several techniques, which show potential for further development, this work has improved our knowledge of the biology and life-cycle of L. branchialis. Further study of this, and other areas of L. branchialis biology and its host-parasite interactions, should assist the development of contingency plans for the effective management and control of this widespread and potentially devastating pathogen.EThOS - Electronic Theses Online ServiceNERCGBUnited Kingdo

    Radiation safety aspects of commercial high-speed flight transportation

    Get PDF
    High-speed commercial flight transportation is being studied for intercontinental operations in the 21st century, the projected operational characteristics for these aircraft are examined, the radiation environment as it is now known is presented, and the relevant health issues are discussed. Based on a critical examination of the data, a number of specific issues need to be addressed to ensure an adequate knowledge of the ionizing radiation health risks of these aircraft operations. Large uncertainties in our knowledge of the physical fields for high-energy neutrons and multiply-charged ion components need to be reduced. Improved methods for estimating risks in prenatal exposure need to be developed. A firm basis for solar flare monitoring and forecasting needs to be developed with means of exposure abatement

    Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis

    Get PDF
    SummaryCytosine methylation is important for transposon silencing and epigenetic regulation of endogenous genes, although the extent to which this DNA modification functions to regulate the genome is still unknown. Here we report the first comprehensive DNA methylation map of an entire genome, at 35 base pair resolution, using the flowering plant Arabidopsis thaliana as a model. We find that pericentromeric heterochromatin, repetitive sequences, and regions producing small interfering RNAs are heavily methylated. Unexpectedly, over one-third of expressed genes contain methylation within transcribed regions, whereas only ∼5% of genes show methylation within promoter regions. Interestingly, genes methylated in transcribed regions are highly expressed and constitutively active, whereas promoter-methylated genes show a greater degree of tissue-specific expression. Whole-genome tiling-array transcriptional profiling of DNA methyltransferase null mutants identified hundreds of genes and intergenic noncoding RNAs with altered expression levels, many of which may be epigenetically controlled by DNA methylation

    Optical modeling of the Jefferson Laboratory IR demo FEL

    Full text link
    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is in the process of building a 1 kW free-electron laser operates at 3 microns. The details of the accelerator driver are given in other papers in these proceedings. The optical cavity consists of a near-concentric resonator with transmissive outcoupling. Though several free-electron lasers have used similar designs, they have not had to confront the high average-power loading present in this laser. It is useful to know the limits of this type of optical cavity design. The optical system of the laser has been modeled using the commercial code GLAD{reg_sign} by using a Beer`s-law region to mimic the FEL interaction. The effects of mirror heating have been calculated and compared with analytical treatments. The magnitude of the distortion for several materials and wave-lengths has been estimated. The model developed here allows one to quickly determine whether the mirror substrates and coatings are adequate for operation at a given optical power level once the absorption of the coatings, substrate, and transmission are known. Results of calculations of the maximum power level expected using several different sets of mirrors will be presented. Measurements of the distortion in calcium fluoride from absorption of carbon dioxide laser light are planned to benchmark the simulations. Multimode simulations using the code ELIXER have been carried out to characterize the saturated optical mode quality. The results will be presented

    How journal rankings can suppress interdisciplinary research. A comparison between Innovation Studies and Business & Management

    Get PDF
    This study provides quantitative evidence on how the use of journal rankings can disadvantage interdisciplinary research in research evaluations. Using publication and citation data, it compares the degree of interdisciplinarity and the research performance of a number of Innovation Studies units with that of leading Business & Management schools in the UK. On the basis of various mappings and metrics, this study shows that: (i) Innovation Studies units are consistently more interdisciplinary in their research than Business & Management schools; (ii) the top journals in the Association of Business Schools' rankings span a less diverse set of disciplines than lower-ranked journals; (iii) this results in a more favourable assessment of the performance of Business & Management schools, which are more disciplinary-focused. This citation-based analysis challenges the journal ranking-based assessment. In short, the investigation illustrates how ostensibly 'excellence-based' journal rankings exhibit a systematic bias in favour of mono-disciplinary research. The paper concludes with a discussion of implications of these phenomena, in particular how the bias is likely to affect negatively the evaluation and associated financial resourcing of interdisciplinary research organisations, and may result in researchers becoming more compliant with disciplinary authority over time.Comment: 41 pages, 10 figure

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Retroviral DNA Integration: Viral and Cellular Determinants of Target-Site Selection

    Get PDF
    Retroviruses differ in their preferences for sites for viral DNA integration in the chromosomes of infected cells. Human immunodeficiency virus (HIV) integrates preferentially within active transcription units, whereas murine leukemia virus (MLV) integrates preferentially near transcription start sites and CpG islands. We investigated the viral determinants of integration-site selection using HIV chimeras with MLV genes substituted for their HIV counterparts. We found that transferring the MLV integrase (IN) coding region into HIV (to make HIVmIN) caused the hybrid to integrate with a specificity close to that of MLV. Addition of MLV gag (to make HIVmGagmIN) further increased the similarity of target-site selection to that of MLV. A chimeric virus with MLV Gag only (HIVmGag) displayed targeting preferences different from that of both HIV and MLV, further implicating Gag proteins in targeting as well as IN. We also report a genome-wide analysis indicating that MLV, but not HIV, favors integration near DNase I–hypersensitive sites (i.e., +/− 1 kb), and that HIVmIN and HIVmGagmIN also favored integration near these features. These findings reveal that IN is the principal viral determinant of integration specificity; they also reveal a new role for Gag-derived proteins, and strengthen models for integration targeting based on tethering of viral IN proteins to host proteins

    Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences

    Get PDF
    The completion of the human genome sequence has made possible genome-wide studies of retroviral DNA integration. Here we report an analysis of 3,127 integration site sequences from human cells. We compared retroviral vectors derived from human immunodeficiency virus (HIV), avian sarcoma-leukosis virus (ASLV), and murine leukemia virus (MLV). Effects of gene activity on integration targeting were assessed by transcriptional profiling of infected cells. Integration by HIV vectors, analyzed in two primary cell types and several cell lines, strongly favored active genes. An analysis of the effects of tissue-specific transcription showed that it resulted in tissue-specific integration targeting by HIV, though the effect was quantitatively modest. Chromosomal regions rich in expressed genes were favored for HIV integration, but these regions were found to be interleaved with unfavorable regions at CpG islands. MLV vectors showed a strong bias in favor of integration near transcription start sites, as reported previously. ASLV vectors showed only a weak preference for active genes and no preference for transcription start regions. Thus, each of the three retroviruses studied showed unique integration site preferences, suggesting that virus-specific binding of integration complexes to chromatin features likely guides site selection
    corecore