17 research outputs found

    The Effects of Psychostimulant Drugs on Blood Brain Barrier Function and Neuroinflammation

    Get PDF
    The blood brain barrier (BBB) is a highly dynamic interface between the central nervous system (CNS) and periphery. The BBB is comprised of a number of components and is part of the larger neuro(glio)vascular unit. Current literature suggests that psychostimulant drugs of abuse alter the function of the BBB which likely contributes to the neurotoxicities associated with these drugs. In both preclinical and clinical studies, psychostimulants including methamphetamine, MDMA, cocaine, and nicotine, produce BBB dysfunction through alterations in tight junction protein expression and conformation, increased glial activation, increased enzyme activation related to BBB cytoskeleton remodeling, and induction of neuroinflammatory pathways. These detrimental changes lead to increased permeability of the BBB and subsequent vulnerability of the brain to peripheral toxins. In fact, abuse of these psychostimulants, notably methamphetamine and cocaine, has been shown to increase the invasion of peripheral bacteria and viruses into the brain. Much work in this field has focused on the co-morbidity of psychostimulant abuse and human immunodeficiency virus (HIV) infection. As psychostimulants alter BBB permeability, it is likely that this BBB dysfunction results in increased penetration of the HIV virus into the brain thus increasing the risk of and severity of neuro AIDS. This review will provide an overview of the specific changes in components within the BBB associated with psychostimulant abuse as well as the implications of these changes in exacerbating the neuropathology associated with psychostimulant drugs and HIV co-morbidity

    Bioremediation: the eco-friendly solution to the hazardous problem of environmental pollution

    Get PDF
    Bioremediation is a technique to enhance natural biological processes to rectify polluted groundwater, soil, and even entire habitats. Bioremediation techniques use biological agents to act upon hazardous, toxic materials and subsequently convert them into less toxic substances.Microbes are organisms ubiquitously present in the biosphere. These microorganisms are the main agents that remediate toxic and polluted environmental conditions. Highly polluted areas can be rectified using proper bioremediation procedures and interventions. In this review we have studied the different bioremediation techniques which can be utilized to correct the harmful effects of environmental pollution. In this study we have also emphasized on the benefits of adopting bioremediation as an efficient alternative technique in comparison to the traditional physical and chemical methods to restore the healthy environmental conditions

    Exploring diffuse radio emission in galaxy clusters and groups with the uGMRT and the SKA

    Full text link
    Diffuse radio emission has been detected in a considerable number of galaxy clusters and groups, revealing the presence of pervasive cosmic magnetic fields, and of relativistic particles in the large-scale structure (LSS) of the Universe. Since cluster radio emission is faint and steep spectrum, its observations are largely limited by the instrument sensitivity and frequency of observation, leading to a dearth of information, more so for lower-mass systems. The unprecedented sensitivity of recently commissioned low-frequency radio telescope arrays, aided by the development of advanced calibration and imaging techniques, have helped in achieving unparalleled image quality. At the same time, the development of sophisticated numerical simulations and the availability of supercomputing facilities have paved the way for high-resolution numerical modeling of radio emission, and the structure of the cosmic magnetic fields in LSS, leading to predictions matching the capabilities of observational facilities. In view of these rapidly-evolving scenerio in modeling and observations, in this review, we summarise the role of the new telescope arrays and the development of advanced imaging techniques and discuss the detections of various kinds of cluster radio sources. In particular, we discuss observations of the cosmic web in the form of supercluster filaments, studies of emission in poor clusters and groups of galaxies, and of ultra-steep spectrum sources. We also review the current theoretical understanding of various diffuse cluster radio sources and the associated magnetic field and polarization. As the statistics of detections improve along with our theoretical understanding, we update the source classification schemes based on their intrinsic properties. We conclude by summarising the role of the upgraded GMRT and our expectations from the upcoming Square Kilometre Array (SKA) observatories.Comment: 32 pages, 10 figures, accepted for publication in the Journal of Astrophysics and Astronomy (JoAA) (to appear in the special issue on "Indian participation in the SKA"

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Closed-loop, multichannel experimentation using the open-source NeuroRighter electrophysiology platform

    Get PDF
    Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand alone application, its plugin API, and an extensive set of case studies that highlight the system's abilities for conducting closed-loop, multichannel interfacing experiments

    Multiscale Forecasting of High-Impact Weather: Current Status and Future Challenges

    No full text
    International audienceAbstract Improving the forecasting and communication of weather hazards such as urban floods and extreme winds has been recognized by the World Meteorological Organization (WMO) as a priority for international weather research. The WMO has established a 10-yr High-Impact Weather Project (HIWeather) to address global challenges and accelerate progress on scientific and social solutions. In this review, key challenges in hazard forecasting are first illustrated and summarized via four examples of high-impact weather events. Following this, a synthesis of the requirements, current status, and future research in observations, multiscale data assimilation, multiscale ensemble forecasting, and multiscale coupled hazard modeling is provided

    Exploring diffuse radio emission in galaxy clusters and groups with the uGMRT and the SKA

    No full text
    Diffuse radio emission has been detected in a considerable number of galaxy clusters and groups, revealing the presence of pervasive cosmic magnetic fields, and of relativistic particles in the large-scale structure (LSS) of the Universe. Since cluster radio emission is faint and steep spectrum, its observations are largely limited by the instrument sensitivity and frequency of observation, leading to a dearth of information, more so for lower-mass systems. The unprecedented sensitivity of recently commissioned low-frequency radio telescope arrays, aided by the development of advanced calibration and imaging techniques, have helped in achieving unparalleled image quality. At the same time, the development of sophisticated numerical simulations and the availability of supercomputing facilities have paved the way for high-resolution numerical modeling of radio emission, and the structure of the cosmic magnetic fields in LSS, leading to predictions matching the capabilities of observational facilities. In view of these rapidly-evolving scenerio in modeling and observations, in this review, we summarise the role of the new telescope arrays and the development of advanced imaging techniques and discuss the detections of various kinds of cluster radio sources. In particular, we discuss observations of the cosmic web in the form of supercluster filaments, studies of emission in poor clusters and groups of galaxies, and of ultra-steep spectrum sources. We also review the current theoretical understanding of various diffuse cluster radio sources and the associated magnetic field and polarization. As the statistics of detections improve along with our theoretical understanding, we update the source classification schemes based on their intrinsic properties. We conclude by summarising the role of the upgraded GMRT and our expectations from the upcoming Square Kilometre Array (SKA) observatories

    Exploring diffuse radio emission in galaxy clusters and groups with the uGMRT and the SKA

    No full text
    Diffuse radio emission has been detected in a considerable number of galaxy clusters and groups, revealing the presence of pervasive cosmic magnetic fields, and of relativistic particles in the large-scale structure (LSS) of the Universe. Since cluster radio emission is faint and steep spectrum, its observations are largely limited by the instrument sensitivity and frequency of observation, leading to a dearth of information, more so for lower-mass systems. The unprecedented sensitivity of recently commissioned low-frequency radio telescope arrays, aided by the development of advanced calibration and imaging techniques, have helped in achieving unparalleled image quality. At the same time, the development of sophisticated numerical simulations and the availability of supercomputing facilities have paved the way for high-resolution numerical modeling of radio emission, and the structure of the cosmic magnetic fields in LSS, leading to predictions matching the capabilities of observational facilities. In view of these rapidly-evolving scenerio in modeling and observations, in this review, we summarise the role of the new telescope arrays and the development of advanced imaging techniques and discuss the detections of various kinds of cluster radio sources. In particular, we discuss observations of the cosmic web in the form of supercluster filaments, studies of emission in poor clusters and groups of galaxies, and of ultra-steep spectrum sources. We also review the current theoretical understanding of various diffuse cluster radio sources and the associated magnetic field and polarization. As the statistics of detections improve along with our theoretical understanding, we update the source classification schemes based on their intrinsic properties. We conclude by summarising the role of the upgraded GMRT and our expectations from the upcoming Square Kilometre Array (SKA) observatories

    Exploring diffuse radio emission in galaxy clusters and groups with the uGMRT and the SKA

    No full text
    Diffuse radio emission has been detected in a considerable number of galaxy clusters and groups, revealing the presence of pervasive cosmic magnetic fields, and of relativistic particles in the large-scale structure (LSS) of the Universe. Since cluster radio emission is faint and steep spectrum, its observations are largely limited by the instrument sensitivity and frequency of observation, leading to a dearth of information, more so for lower-mass systems. The unprecedented sensitivity of recently commissioned low-frequency radio telescope arrays, aided by the development of advanced calibration and imaging techniques, have helped in achieving unparalleled image quality. At the same time, the development of sophisticated numerical simulations and the availability of supercomputing facilities have paved the way for high-resolution numerical modeling of radio emission, and the structure of the cosmic magnetic fields in LSS, leading to predictions matching the capabilities of observational facilities. In view of these rapidly-evolving scenerio in modeling and observations, in this review, we summarise the role of the new telescope arrays and the development of advanced imaging techniques and discuss the detections of various kinds of cluster radio sources. In particular, we discuss observations of the cosmic web in the form of supercluster filaments, studies of emission in poor clusters and groups of galaxies, and of ultra-steep spectrum sources. We also review the current theoretical understanding of various diffuse cluster radio sources and the associated magnetic field and polarization. As the statistics of detections improve along with our theoretical understanding, we update the source classification schemes based on their intrinsic properties. We conclude by summarising the role of the upgraded GMRT and our expectations from the upcoming Square Kilometre Array (SKA) observatories
    corecore