508 research outputs found
The Etiology of Generalized Osteoporosis in Rheumatoid Arthritis
Klein Nulend, J. [Promotor]Luyten, F.P. [Promotor]Bravenboer, N. [Copromotor]Bakker, A.D. [Copromotor]Verschueren, P. [Copromotor
Osteocyte isolation and culture methods.
The aim of this paper is to present several popular methods for in vitro culture of osteocytes and osteocyte cell lines. Osteocytes are located extremely suitably within the calcified bone matrix to sense mechanical signals, and are equipped with a multitude of molecular features that allow mechanosensing. However, osteocytes are more than specialized mechanosensing cells. Several signaling molecules are preferentially produced by osteocytes, and osteocytes hold a tight reign over osteoblast and osteoclast formation and activity, but also have a role as endocrine cell, communicating with muscles or organs as remote as the kidneys. In order to facilitate further research into this fascinating cell type, three protocols will be provided in this paper. The first protocol will be on the culture of mouse (early) osteocyte cell lines, the second on the isolation and culture of primary mouse bone cells, and the third on the culture of fully embedded human osteocytes within their own three-dimensional bone matrix
Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics
CdSe quantum dots functionalized with oligo-(phenylene vinylene) (OPV) ligands (CdSe-OPV nanostructures) represent a new class of composite nanomaterials with significantly modified photophysics relative to bulk blends or isolated components. Single-molecule spectroscopy on these species have revealed novel photophysics such as enhanced energy transfer, spectral stability, and strongly modified excited state lifetimes and blinking statistics. Here, we review the role of ligands in quantum dot applications and summarize some of our recent efforts probing energy and charge transfer in hybrid CdSe-OPV composite nanostructures
Linear Collider Physics Resource Book for Snowmass 2001, 3: Studies of Exotic and Standard Model Physics
This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available
The upgrade of the ALICE TPC with GEMs and continuous readout
The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, which are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020.publishedVersio
Meta-analysis of type 2 Diabetes in African Americans Consortium
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 Ă 10(-94)<P<5 Ă 10(-8), odds ratio (OR)â = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 Ă 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe
Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV
Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe
Ï production in pâPb collisions at âsNN=8.16 TeV
Ï production in pâPb interactions is studied at the centre-of-mass energy per nucleonânucleon collision âsNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and â4.46 < ycms < â2.96, down to zero transverse momentum. In this work, results on the Ï(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the Ï(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the Ï(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the Ï(1S). A first measurement of the Ï(3S) has also been performed. Finally, results are compared with previous ALICE measurements in pâPb collisions at âsNN = 5.02 TeV and with theoretical calculations.publishedVersio
(Anti-)deuteron production in pp collisions at 1as=13TeV
The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)
- âŠ