116 research outputs found

    Pesticide contamination interception strategy and removal efficiency in forest buffer and artificial wetland in a tile-drained agricultural watershed

    No full text
    Yves couqet : present adress : UMR7327 on sept. 2012International audiencePesticide pollution is a major threat to aquatic ecosystems that can be mitigated through complementary actions including buffer zones (BZs). This paper discusses the results of 3 yr of field-scale monitoring of the concentration and load transfer of 16 pesticides out of a tile-drained catchment (Bray, France) and their reduction through two BZ: an artificial wetland (AW) and a forest buffer (FB). Typically, the highest concentrations were measured in the first flows following pesticide applications or resuming after periods of low or no flow. An open/close water management strategy was implemented to operate the parallel BZ based on pesticide applications by the farmer. The strategy was efficient in intercepting molecules whose highest concentrations occurred during the first flows following application. Inlet vs. outlet pesticide load reductions ranged from 45% to 96% (AW) and from −32% to 100% (FB) depending on the pesticide molecule and the hydrological year. Partly reversible adsorption was a dominant process explaining pesticide removal; whereas, degradation occurred for sufficiently long water retention time. Apart from the least sorbing molecules (e.g., isoproturon), BZ can partially remove pesticide pollution

    Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina

    Get PDF
    In Argentina, glyphosate use has increased exponentially in the past years due to the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in three Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (Kf). Glyphosate sorption was high and the Kf varied from 115.6 to 1612 mg 1-1/nL1/n /Kg. Cerro Azul soil had the highest glyphosate sorption capacity due to a combination of factors such as higher clay content, CEC, total Fe, Al oxides and lower available phosphorous and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (<12%). The low values of hysteresis coefficient (H) confirm that glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significant higher desorption coefficient (Kfd) than the other soils, associated with its lower clay content and higher pH and phosphorous. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability increasing its persistence and favoring its accumulation in environment. Results of this study contribute to the knowledge and characterization of glyphosate retention in different soils.Fil: GĂłmez Ortiz, Ana Maria. Universidad Nacional de Mar del Plata; ArgentinaFil: Okada, Elena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Instituto Nacional de TecnologĂ­a Agropecuaria; ArgentinaFil: Bedmar, Francisco. Universidad Nacional de Mar del Plata; ArgentinaFil: Costa, Jose Luis. Instituto Nacional de TecnologĂ­a Agropecuaria; Argentin

    Bioretention cells under cold climate conditions: Effects of freezing and thawing on water infiltration, soil structure, and nutrient removal

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.scitotenv.2018.08.366 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Bioretention cells are a popular control strategy for stormwater volume and quality, but their efficiency for water infiltration and nutrient removal under cold climate conditions has been poorly studied. In this work, soil cores were collected from an active bioretention cell containing engineered soil material amended with a phosphate sorbent medium. The cores were used in laboratory column experiments conducted to obtain a detailed characterization of the soil's bioretention performance during six consecutive freeze–thaw cycles (FTCs, from −10 to +10 °C). At the start of each FTC, the experimental column undergoing the FTCs and a control column kept at room temperature were supplied with a solution containing 25 mg/L of bromide, nitrate and phosphate. Water saturated conditions were established to mimic the presence of an internal water storage zone to support anaerobic nitrate removal. At the end of each FTC, the pore solution was allowed to drain from the columns. The results indicate that the FTCs enhanced the infiltration efficiency of the soil: with each successive cycle the drainage rate increased in the experimental column. Freezing and thawing also increased the saturated hydraulic conductivity of the bioretention soil. X-ray tomography imaging identified a key role of macro-pore formation in maintaining high infiltration rates. Both aqueous nitrate and phosphate supplied to the columns were nearly completely removed from solution. Sufficiently long retention times and the presence of the internal water storage zone promoted anaerobic nitrate elimination despite the low temperatures. Dissolved phosphate was efficiently trapped at all depths in the soil columns, with ≀2% of the added stormwater phosphate recovered in the drainage effluent. These findings imply that, when designed properly, bioretention cells can support high infiltration rates and mitigate nutrient pollution in cold climates.University of TorontoCanada Excellence Research Chairs, Government of CanadaNatural Science and Engineering Research Council ["485238-15","479034-15","950-230892"]NSERC Discovery [RGPIN-2015-03801

    Removal of the pesticide tebuconazole in constructed wetlands: design comparison, influencing factors and modelling

    Get PDF
    Constructed wetlands (CWs) are a promising technology to treat pesticide contaminated water, but its implementation is impeded by lack of data to optimize designs and operating factors. Unsaturated and saturated CW designs were used to compare the removal of triazole pesticide, tebuconazole, in unplanted mesocosms and mesocosms planted with five different plant species: Typha latifolia, Phragmites australis, Iris pseudacorus, Juncus effusus and Berula erecta. Tebuconazole removal efficiencies were significantly higher in unsaturated CWs than saturated CWs, showing for the first time the potential of unsaturated CWs to treat tebuconazole contaminated water. An artificial neural network model was demonstrated to provide more accurate predictions of tebuconazole removal than the traditional linear regression model. Also, tebuconazole removal could be fitted an area-based first order kinetics model in both CW designs. The removal rate constants were consistently higher in unsaturated CWs (range of 2.6–10.9 cm d−1) than in saturated CWs (range of 1.7–7.9 cm d−1) and higher in planted CWs (range of 3.1–10.9 cm d−1) than in unplanted CWs (range of 1.7–2.6 cm d−1) for both designs. The low levels of sorption of tebuconazole to the substrate (0.7–2.1%) and plant phytoaccumulation (2.5–12.1%) indicate that the major removal pathways were biodegradation and metabolization inside the plants after plant uptake. The main factors influencing tebuconazole removal in the studied systems were system design, hydraulic loading rate and plant presence. Moreover, tebuconazole removal was positively correlated to dissolved oxygen and all nutrients removal

    Growth dynamics of deciduous species during their life period: A case study of urban green space in India

    Get PDF
    It is evident that grass density (GD) and shoot growth rate (SGR) governs the differential settlement of substructure, groundwater recharge, and stability of green infrastructure. GD and SGR are usually assumed to be constant during the entire life period of vegetation. However, spatial and temporal dynamics of GD and SGR in urban green space were rarely explored previously. The main objective of this study is to explore the spatial and temporal dynamics of GD and SGR in urban space vegetated with deciduous species (mix grass i.e., Poaceae and Bauhinia purpurea). Field monitoring was conducted in the urban green space for one year (i.e., life period of selected species). The monitoring period includes the growth period and gradual wilting period. Substantial spatial variation of GD was found during the first six months. GD away from the tree trunk was found to be 1.02–56.3 times higher than that near the tree trunk during the first six months. Thereafter, any spatial variation of GD was not found in the next six months. Unlike the GD, SGR was found to vary during the entire life period of mix grass. In addition, SGR away from the tree trunk was found to be 1.1–4.6 times higher than that near the tree trunk. Any relationship between GD and rainfall depth was not found. Whereas, SGR mainly depends on rainfall depth. The hypothesis of uniformity in GD and SGR during the life period of deciduous species was not found to be true

    The sources, impact and management of car park runoff pollution: a review

    Get PDF
    Traffic emissions contribute significantly to the build-up of diffuse pollution loads on urban surfaces with their subsequent mobilisation and direct discharge posing problems for receiving water quality. This review focuses on the impact and mitigation of solids, metals, nutrients and organic pollutants in the runoff deriving from car parks. Variabilities in the discharged pollutant levels and in the potentials for pollutant mitigation complicate an impact assessment of car park runoff. The different available stormwater best management practices and proprietary devices are reported to be capable of reductions of between 20% and almost 100% for both suspended solids and a range of metals. This review contributes to prioritising the treatment options which can achieve the appropriate pollutant reductions whilst conforming to the site requirements of a typical car park. By applying different treatment scenarios to the runoff from a hypothetical car park, it is shown that optimal performance, in terms of ecological benefits for the receiving water, can be achieved using a treatment train incorporating permeable paving and bioretention systems. The review identifies existing research gaps and emphasises the pertinent management practices as well as design issues which are relevant to the mitigation of car park pollution

    On the potential of on-line free-surface constructed wetlands for attenuating pesticide losses from agricultural land to surface waters

    Get PDF
    Pesticides make important contributions to agriculture but losses from land to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water. “On-line” constructed wetlands have been proposed as a potential means of reducing pesticide fluxes in drainage ditches and headwater streams. Here, we evaluate the potential of two free-surface constructed wetland systems to reduce pesticide concentrations in surface waters using a combination of field monitoring and dynamic fugacity modelling. We specifically focus on metaldehyde, a commonly-used molluscicide which is moderately mobile and has been regularly detected at high concentrations in drinking water supply catchments in the UK over the past few years. We also present data for the herbicide metazachlor. Metaldehyde losses from the upstream catchment were significant with peak concentrations occurring in the first storm events in early autumn, soon after application. Concentrations and loads appeared to be minimally affected by transit through the monitored wetlands over a range of flow conditions. This was probably due to short solute residence times (quantified via several tracing experiments employing rhodamine WT – a fluorescent dye) exacerbated by solute exclusion phenomena resulting from patchy vegetation. Model analyses of different scenarios suggested that, even for pesticides with a relatively short aquatic half-life, wetland systems would need to exhibit much longer residence times (RTs) than those studied here in order to deliver any appreciable attenuation. If the ratio of wetland surface area to the area of the contributing catchment is assumed to be a surrogate for RT (i.e. not accounting for solute exclusion) then model predictions suggest that this needs to be greater than 1% to yield load reductions of 3 and 7% for metaldehyde and metazachlor, respectively
    • 

    corecore