125 research outputs found

    Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics

    Get PDF
    A framework is introduced which explains the existence and similarities of most exact solutions of the Einstein equations with a wide range of sources for the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian formulation. This class includes the spatially homogeneous cosmological models and the astrophysically interesting static spherically symmetric models as well as the stationary cylindrically symmetric models. The framework involves methods for finding and exploiting hidden symmetries and invariant submanifolds of the Hamiltonian formulation of the field equations. It unifies, simplifies and extends most known work on hypersurface-homogeneous exact solutions. It is shown that the same framework is also relevant to gravitational theories with a similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for publication in Phys. Rev.

    Illicit substance use among university students from seven European countries: A comparison of personal and perceived peer use and attitudes towards illicit substance use

    Get PDF
    Objective: To compare European students' personal use and approval of illicit substance use with their perceptions of peer behaviours and attitudes, and investigate whether perceptions of peer norms are associated with personal use of illicit substances and attitudes. Method: This study used baseline data fromthe Social Norms Intervention for the prevention of Polydrug usE (SNIPE) project involving 4482 students from seven European countries in 2012. Students completed an online surveywhich included questions on personal and perceived peer illicit substance use and personal and perceived peer attitude towards illicit substances. Results: 8.3% of students reported having used illicit substances at least once in their life. 49.7% of students perceived that the majority of their peers have used illicit substances more frequently than themselves. The perception was significantly associated with higher odds for personal illicit substance use (OR: 1.97, 95% CI: 1.53–2.54). The perception that the majority of peers approve illicit substance use was significantly associated with higher odds for personal approval of illicit substance use (OR: 3.47, 95% CI: 2.73–4.41). Conclusion: Students commonly perceived that their peers used illicit subtances more often than themselves. We found an association between the perceived peer norms/attitudes and reported individual behaviour/ attitudes

    A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy.

    Get PDF
    Antimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection. Increasing peptide-lipid intermolecular hydrogen bonding capabilities enhances conformational flexibility, associated with membrane translocation, but also membrane damage and potency, most notably against Gram-positive bacteria. This negates their ability to metabolically adapt to the AMP threat. An analogue comprising D-amino acids was well tolerated at an intravenous dose of 15 mg/kg and similarly effective as vancomycin in reducing EMRSA-15 lung CFU. This highlights the therapeutic potential of systemically delivered, bactericidal AMPs

    Pulsars as Fantastic Objects and Probes

    Full text link
    Pulsars are fantastic objects, which show the extreme states of matters and plasma physics not understood yet. Pulsars can be used as probes for the detection of interstellar medium and even the gravitational waves. Here I review the basic facts of pulsars which should attract students to choose pulsar studies as their future projects.Comment: Invited Lecture on the "First Kodai-Trieste Workshop on Plasma Astrophysics", Kodaikanal Obs, India. Aug.27-Sept.7th, 2007. In: "Turbulence, Dynamos, Accretion Disks, Pulsars and Collective Plasma Processes". Get a copy from: http://www.springerlink.com/content/978-1-4020-8867-

    Measurement-based quantum foundations

    Full text link
    I show that quantum theory is the only probabilistic framework that permits arbitrary processes to be emulated by sequences of local measurements. This supports the view that, contrary to conventional wisdom, measurement should not be regarded as a complex phenomenon in need of a dynamical explanation but rather as a primitive -- and perhaps the only primitive -- operation of the theory.Comment: 8 pages, version to appear in Found. Phy

    Approximate relativistic bound state solutions of the Tietz-Hua rotating oscillator for any -state

    Full text link
    Approximate analytic solutions of the Dirac equation with Tietz-Hua (TH) potential are obtained for arbitrary spin-orbit quantum number using the Pekeris approximation scheme to deal with the spin-orbit coupling terms In the presence of exact spin and pseudo-spin (pspin) symmetric limitation, the bound state energy eigenvalues and associated two-component wave functions of the Dirac particle moving in the field of attractive and repulsive TH potential are obtained using the parametric generalization of the Nikiforov-Uvarov (NU) method. The cases of the Morse potential, the generalized Morse potential and non-relativistic limits are studied.Comment: 19 pages; 7 figures; Few-Body Systems (2012) (at press

    Online change detection in exponential families with unknown parameters

    Get PDF
    International audienceThis paper studies online change detection in exponential families when both the parameters before and after change are unknown. We follow a standard statistical approach to sequential change detection with generalized likelihood ratio test statistics. We interpret these statistics within the framework of information geometry, hence providing a unified view of change detection for many common statistical models and corresponding distance functions. Using results from convex duality, we also derive an efficient scheme to compute the exact statistics sequentially, which allows their use in online settings where they are usually approximated for the sake of tractability. This is applied to real-world datasets of various natures, including onset detection in audio signals

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    corecore