470 research outputs found

    Perceptions and attitudes towards dementia among university students in Malaysia.

    Get PDF
    BACKGROUND: One of the major challenges worldwide is the stigma associated with dementia. There is limited dementia awareness within Malaysian communities, including levels of confusion regarding the differences between dementia and the usual ageing progress, which can lead to delays in support seeking. The need for additional training and education for healthcare professionals has been highlighted. The present study aimed to evaluate the benefits of a one-hour dementia education session (Dementia Detectives workshop) for pharmacy and medicine undergraduate students at a Malaysian university. METHODS: Participants attended the workshop and completed pre- (Time 1) and post-workshop (Time 2) questionnaires consisting of validated measures exploring attitudes towards dementia and older people more broadly. RESULTS: A total of 97 students were recruited. Attitudes towards people with dementia showed significant positive changes between Time 1 and Time 2, whereas no differences were found for attitudes towards older people. CONCLUSIONS: As medical and pharmacy students develop theoretical knowledge, practical skills and professional attitudes during their undergraduate studies, it is important for students to also learn about the humanistic side of diseases and conditions through workshops such as the one presented here. Further research should now be conducted to consider how Dementia Detectives can be delivered to non-healthcare students and what the barriers and facilitators to wider delivery are

    The fidelity of dynamic signaling by noisy biomolecular networks

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.We acknowledge support from a Medical Research Council and Engineering and Physical Sciences Council funded Fellowship in Biomedical Informatics (CGB) and a Scottish Universities Life Sciences Alliance chair in Systems Biology (PSS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Thermoelectric properties of Cu-dispersed bi0.5sb1.5te3

    Get PDF
    A novel and simple approach was used to disperse Cu nanoparticles uniformly in the Bi0.5Sb1.5Te3 matrix, and the thermoelectric properties were evaluated for the Cu-dispersed Bi0.5Sb1.5Te3. Polycrystalline Bi0.5Sb1.5Te3 powder prepared by encapsulated melting and grinding was dry-mixed with Cu(OAc)2 powder. After Cu(OAc)2 decomposition, the Cu-dispersed Bi0.5Sb1.5Te3 was hot-pressed. Cu nanoparticles were well-dispersed in the Bi0.5Sb1.5Te3 matrix and acted as effective phonon scattering centers. The electrical conductivity increased systematically with increasing level of Cu nanoparticle dispersion. All specimens had a positive Seebeck coefficient, which confirmed that the electrical charge was transported mainly by holes. The thermoelectric figure of merit was enhanced remarkably over a wide temperature range of 323-523 K

    Severe acquired cytomegalovirus infection in a full-term, formula-fed infant: Case Report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cases of cytomegalovirus colitis are exceptionally reported in immuno-competent infant. The pathogenesis is uncertain but breast-feeding is considered as a main source of postnatal infection.</p> <p>Case Presentation</p> <p>Here we report a full-term, formula-fed infant who developed a severe cytomegalovirus anaemia and colitis when aged 2 months.</p> <p>Conclusion</p> <p>Even if the molecular identity between the cytomegalovirus-isolate of the infant and the maternal virus could not be demonstrated, we confirmed through laboratory investigation that cytomegalovirus infection was acquired postnatally. However, the source of cytomegalovirus infection remained unclear. Alternative modes of cytomegalovirus transmission are discussed.</p

    Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII a in epileptic hippocampal neurons

    Get PDF
    Purpose: To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II a expression in a model of epileptic neurons were investigated. Method: Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II a protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results: The CaMK II a expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion: GLP may inhibit calcium overload and promote CaMK II a expression to protect epileptic neuron

    Synthesis, Purification and Crystallization of Guanine-rich RNA Oligonucleotides

    Get PDF
    Guanine-rich RNA oligonucleotides display many novel structural motifs in recent crystal structures. Here we describe the procedures of the chemical synthesis and the purification of such RNA molecules that are suitable for X-ray crystallographic studies. Modifications of the previous purification methods allow us to obtain better yields in shorter time. We also provide 24 screening conditions that are very effective in crystallization of the guanine-rich RNA oligonucleotides. Optimal crystallization conditions are usually achieved by adjustment of the concentration of the metal ions and pH of the buffer. Crystals obtained by this method usually diffract to high resolution

    International Veterinary Epilepsy Task Force recommendations for systematic sampling and processing of brains from epileptic dogs and cats

    Get PDF
    Traditionally, histological investigations of the epileptic brain are required to identify epileptogenic brain lesions, to evaluate the impact of seizure activity, to search for mechanisms of drug-resistance and to look for comorbidities. For many instances, however, neuropathological studies fail to add substantial data on patients with complete clinical work-up. This may be due to sparse training in epilepsy pathology and or due to lack of neuropathological guidelines for companion animals. The protocols introduced herein shall facilitate systematic sampling and processing of epileptic brains and therefore increase the efficacy, reliability and reproducibility of morphological studies in animals suffering from seizures. Brain dissection protocols of two neuropathological centres with research focus in epilepsy have been optimised with regards to their diagnostic yield and accuracy, their practicability and their feasibility concerning clinical research requirements. The recommended guidelines allow for easy, standardised and ubiquitous collection of brain regions, relevant for seizure generation. Tissues harvested the prescribed way will increase the diagnostic efficacy and provide reliable material for scientific investigations

    Tractography of developing white matter of the internal capsule and corpus callosum in very preterm infants

    Get PDF
    To investigate in preterm infants associations between Diffusion Tensor Imaging (DTI) parameters of the posterior limb of the internal capsule (PLIC) and corpus callosum (CC) and age, white matter (WM) injury and clinical factors. In 84 preterm infants DTI was performed between 40-62 weeks postmenstrual age on 3 T MR. Fractional anisotropy (FA), apparent diffusion coefficient (ADC) values and fibre lengths through the PLIC and the genu and splenium were determined. WM injury was categorised as normal/mildly, moderately and severely abnormal. Associations between DTI parameters and age, WM injury and clinical factors were analysed. A positive association existed between FA and age at imaging for fibres through the PLIC (r = 0.48 p < 0.001) and splenium (r = 0.24 p < 0.01). A negative association existed between ADC and age at imaging for fibres through the PLIC (r = -0.65 p < 0.001), splenium (r = -0.35 p < 0.001) and genu (r = -0.53 p < 0.001). No association was found between DTI parameters and gestational age, degree of WM injury or categorical clinical factors. These results indicate that in our cohort of very preterm infants, at this young age, the development of the PLIC and CC is ongoing and independent of the degree of prematurity or WM injury.Neuro Imaging Researc

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore