10 research outputs found

    Hepatobiliary and pancreatic imaging in children—techniques and an overview of non-neoplastic disease entities

    Get PDF
    Imaging plays a major role in the diagnostic work-up of children with hepatobiliary or pancreatic diseases. It consists mainly of US, CT and MRI, with US and MRI being the preferred imaging modalities because of the lack of ionizing radiation. In this review the technique of US, CT and MRI in children will be addressed, followed by a comprehensive overview of the imaging characteristics of several hepatobiliary and pancreatic disease entities most common in the paediatric age group

    Combination of differential D*(+/-) cross-section measurements in deep-inelastic ep scattering at HERA

    Get PDF
    H1 and ZEUS have published single-differential cross sections for inclusive D∗±-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2> 5 GeV2, electron inelasticity 0.02 < y < 0.7 and the D∗± meson’s transverse momentum pT(D∗) > 1.5 GeV and pseudorapidity |η(D∗)| < 1.5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d2σ/dQ2dy are combined with earlier D∗± data, extending the kinematic range down to Q2> 1.5 GeV2. Perturbative next-to-leading-order QCD predictions are compared to the results

    Combination of Differential D^{*\pm} Cross-Section Measurements in Deep-Inelastic ep Scattering at HERA

    Get PDF
    H1 and ZEUS have published single-differential cross sections for inclusive D^{*\pm}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2 > 5 GeV2, electron inelasticity 0.02 1.5 GeV and pseudorapidity |eta(D^*)| 1.5 GeV2. Perturbative next-to-leadingorder QCD predictions are compared to the results.H1 and ZEUS have published single-differential cross sections for inclusive D±^{∗±}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2^{2} > 5 GeV2^{2}, electron inelasticity 0.02 1.5 GeV and pseudorapidity |η(D^{∗})| 1.5 GeV2^{2}. Perturbative next-to-leading-order QCD predictions are compared to the results.H1 and ZEUS have published single-differential cross sections for inclusive D^{*\pm}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2 > 5 GeV2, electron inelasticity 0.02 1.5 GeV and pseudorapidity |eta(D^*)| 1.5 GeV2. Perturbative next-to-leadingorder QCD predictions are compared to the results

    First QCD results from SLD

    No full text

    Events with an isolated lepton and missing transverse momentum and measurement of W production at HERA

    No full text

    Precision Electroweak Measurements on the Z resonance.

    Get PDF
    We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron–positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward–backward asymmetries and polarised asymmetries. The mass and width of the Z boson, mZ and ΓZ, and its couplings to fermions, for example the ρ parameter and the effective electroweak mixing angle for leptons, are precisely measured: The number of light neutrino species is determined to be 2.9840±0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward–backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, , and the mass of the W boson, . These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of mt and mW, the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than at 95% confidence level

    Precision electroweak measurements on the Z resonance

    No full text

    Factors influencing harmonized health data collection, sharing and linkage in Denmark and Switzerland: A systematic review

    No full text
    corecore