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1 Introduction

Measurements of open charm production in deep-inelastic electron1-proton scattering (DIS)

at HERA provide important input for stringent tests of the theory of strong interactions,

quantum chromodynamics (QCD). Previous measurements [1–20] have demonstrated that

charm quarks are predominantly produced by the boson-gluon-fusion process, γg → cc,

whereby charm production becomes sensitive to the gluon distribution in the proton. Mea-

surements have been obtained both from the HERA-I (1992–2000) and HERA-II (2003–

2007) data-taking periods.

Different techniques have been applied at HERA to measure open-charm production

in DIS. The full reconstruction of D or D∗± mesons [1–6, 10–12, 15, 16, 18, 20], the long

lifetime of heavy flavoured hadrons [7–9, 12, 14, 17, 19] or their semi-leptonic decays [13]

are exploited. After extrapolation from the visible to the full phase space, most of these

data have already been combined [21] at the level of the reduced cross-sections and have

provided a consistent determination of the charm contribution to the proton structure

functions, a measurement of the charm-quark mass mc(mc) and improved predictions for

W - and Z-production cross sections at the LHC. However, the extrapolation procedure

requires theoretical assumptions, which lead to theoretical uncertainties comparable in

size to the experimental uncertainties [21]. Moreover, this combination was restricted to

inclusive DIS variables only, such as the photon virtuality, Q2, and the inelasticity, y.

Alternatively, the measured cross sections can be combined directly in the visible phase

1In this paper, ‘electron’ is used to denote both electron and positron if not stated otherwise.
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space. In this case, dependences on the theoretical input are minimised and the charm

production mechanism can be explored in terms of other variables. Such a combination,

however, is possible only for data with the same final state, covering a common visible

phase space. The recently published differential cross-section measurements by H1 [15, 18]

and ZEUS [20] for inclusive D∗±-meson production fulfil this requirement. The analysis of

fully reconstructed D∗± mesons also offers the best signal-to-background ratio and small

statistical uncertainties.

In this paper, visible D∗±-production cross sections [6, 15, 18, 20] at the centre-of-mass

energy
√
s = 318 GeV are combined such that one consistent HERA data set is obtained

and compared directly to differential next-to-leading-order (NLO) QCD predictions. The

combination is based on the procedure described elsewhere [21–24], accounting for all cor-

relations in the uncertainties. This yields a significant reduction of the overall uncertainties

of the measurements. The possibility to describe all measurements both in shape and nor-

malisation with a single set of theory parameter values is also investigated and interpreted

in terms of future theory improvements.

The paper is organised as follows. In section 2 the theoretical framework is briefly

introduced that is used for applying phase-space corrections to the input data sets prior to

combination and for providing NLO QCD predictions to be compared to the data. The data

samples used for the combination are detailed in section 3 and the combination procedure

is described in section 4. The combined single- and double-differential cross sections are

presented in section 5 together with a comparison of NLO QCD predictions to the data.

2 Theoretical predictions

The massive fixed-flavour-number scheme (FFNS) [25–28] is used for theoretical predic-

tions, since it is the only scheme for which fully differential NLO calculations [29] are

available. The cross-section predictions for D∗± production presented in this paper are

obtained using the HVQDIS program [29] which provides NLO QCD (O(α2
s )) calculations

in the 3-flavour FFNS for charm and beauty production in DIS. These predictions are used

both for small phase-space corrections of the data, due to slightly different binning schemes

and kinematic cuts, and for comparison to data.

The following parameters are used in the calculations and are varied within certain

limits to estimate the uncertainties associated with the predictions:

• The renormalisation and factorisation scales are taken as µr = µf =
√
Q2 + 4m2

c .

The scales are varied simultaneously up or down by a factor of two for the phase-

space corrections where only the shape of the differential cross sections is relevant.

For absolute predictions, the scales are changed independently to 0.5 and 2 times

their nominal value.

• The pole mass of the charm quark is set to mc = 1.50±0.15 GeV. This variation also

affects the values of the renormalisation and factorisation scales.

• For the strong coupling constant the value α
nf=3
s (MZ) = 0.105± 0.002 is chosen [21]

which corresponds to α
nf=5
s (MZ) = 0.116± 0.002.

– 2 –
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• The proton parton density functions (PDFs) are described by a series of FFNS vari-

ants of the HERAPDF1.0 set [24] at NLO determined within the HERAFitter [30]

framework, similar to those used in the charm combination paper [21]. Charm mea-

surements were not included in the determination of these PDF sets. For all param-

eter settings used here, the corresponding PDF set is used. By default, the scales for

the charm contribution to the inclusive data in the PDF determination were chosen to

be consistent with the factorisation scale used in HVQDIS, while the renormalisation

scale in HVQDIS was decoupled from the scale used in the PDF extraction, except

in the cases where the factorisation and renormalisation scales were varied simulta-

neously. As a cross check, the renormalisation scales for both heavy- and light-quark

contributions are varied simultaneously in HVQDIS and in the PDF determination,

keeping the factorisation scales fixed. The result lies well within the quoted uncer-

tainties. The cross sections are also evaluated with 3-flavour NLO versions of the

ABM [31] and MSTW [32] PDF sets. The differences are found to be negligible com-

pared to those from varying other parameters, such that no attempt for coverage of

all possible PDFs is made.

The NLO calculation performed by the HVQDIS program yields differential cross sec-

tions for charm quarks. These predictions are converted to D∗±-meson cross sections by

applying the fragmentation model described in a previous publication [21]. This model is

based on the fragmentation function of Kartvelishvili et al. [33] which provides a probabil-

ity density function for the fraction of the charm-quark momentum transferred to the D∗±

meson. The function is controlled by a single fragmentation parameter, αK . Different val-

ues of αK [21] are used for different regions of the invariant mass, ŝ, of the photon-parton

centre-of-mass system. The boundary ŝ1 = 70 ± 40 GeV2 between the first two regions is

one of the parameter variations. The boundary ŝ2 = 324 GeV2 between the second and

third region remains fixed. The model also implements a transverse-fragmentation com-

ponent by assigning to the D∗± meson a transverse momentum, kT , with respect to the

charm-quark direction [21]. The following parameters are used in the calculations together

with the corresponding variations for estimating the uncertainties of the NLO predictions

related to fragmentation:

• The fragmentation parameter αK , the bin boundary ŝ1 and the average kT are varied

according to a prescription described elsewhere [21].

• The fraction of charm quarks hadronising into D∗+ mesons is set to f(c→ D∗+) =

f(c̄→ D∗−) = 0.2287± 0.0056 [34].

The small beauty contribution to the D∗± signal needs a detailed treatment of the

B hadron decay to D∗± mesons and is therefore obtained from NLO QCD predictions

for beauty hadrons convoluted with decay tables to D∗± mesons and decay kinematics

obtained from EvtGen [35]. The parameters for the calculations and the uncertainties are:

• The renormalisation and factorisation scales µr = µf =
√
Q2 + 4m2

b are varied in the

same way as described above for charm. The variations are applied simultaneously

for the calculation of the charm and beauty cross-section uncertainties.

– 3 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
9

• The pole mass of the beauty quark is set to mb = 4.75± 0.25 GeV.

• The fragmentation model for beauty quarks is based on the Peterson et al. [36]

parametrisation using εb = 0.0035± 0.0020 [37].

• The fraction of beauty hadrons decaying into D∗± mesons is set to f(b → D∗±) =

0.173± 0.020 [38].

• The proton structure is described by the same PDF set (3-flavour scheme) used for

the charm cross-section predictions.

The total theoretical uncertainties are obtained by adding all individual contributions

in quadrature.

3 Data samples for cross-section combinations

The H1 [39–41] and ZEUS [42] detectors were general purpose instruments which consisted

of tracking systems surrounded by electromagnetic and hadronic calorimeters and muon

detectors. The most important detector components for the measurements combined in this

paper are the central tracking detectors (CTD) operated inside solenoidal magnetic fields of

1.16 T (H1) and 1.43 T (ZEUS) and the electromagnetic sections of the calorimeters. The

CTD of H1 [40] (ZEUS [43–45]) measured charged particle trajectories in the polar angular

range2 of 15◦ < Θ < 165(164)◦. In both detectors the CTDs were complemented with high-

resolution silicon vertex detectors: a system of three silicon detectors for H1, consisting of

the Backward Silicon Tracker [46], the Central Silicon Tracker [47] and the Forward Silicon

Tracker [48], and the Micro Vertex Detector [49] for ZEUS. For charged particles passing

through all active layers of the silicon vertex detectors and CTDs, transverse-momentum

resolutions of σ(pT)/pT ' 0.002pT/ ⊕ 0.015 (H1) and σ(pT)/pT ' 0.0029pT/ ⊕ 0.0081 ⊕
0.0012/pT (ZEUS), with pT in units of GeV, have been achieved.

Each of the central tracking detectors was enclosed by a set of calorimeters compris-

ing an inner electromagnetic and an outer hadronic section. The H1 calorimeter system

consisted of the Liquid Argon calorimeter (LAr) [50] and the backward lead-scintillator

calorimeter (SpaCal) [41] while the ZEUS detector was equipped with a compensating

uranium-scintillator calorimeter (CAL) [51–54]. Most important for the analyses combined

in this paper is the electromagnetic part of the calorimeters which is used to identify and

measure the scattered electron. Electromagnetic energy resolutions σ(E)/E of 0.11/
√
E

(LAr) [55], 0.07/
√
E (SpaCal) [56] and 0.18/

√
E (CAL), with E in units of GeV, were

achieved.

The Bethe-Heitler process, ep → eγp, is used by both experiments to determine the

luminosity. Photons originating from this reaction were detected by photon taggers at

about 100 m downstream of the electron beam line. The integrated luminosities are known

2In both experiments a right-handed coordinate system is employed with the Z axis pointing in the

nominal proton-beam direction, referred to as “forward direction”, and the X axis pointing towards the

centre of HERA. The origin of the coordinate system is defined by the nominal interaction point in the case

of H1 and by the centre of the CTD in the case of ZEUS.
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Data set

Kinematic range

Q2 y pT(D∗) η(D∗) L
(GeV2) (GeV) (pb−1)

I H1 D∗± HERA-II (medium Q2) [18] 5 : 100 0.02 : 0.70 > 1.5 −1.5 : 1.5 348

II H1 D∗± HERA-II (high Q2) [15] 100 : 1000 0.02 : 0.70 > 1.5 −1.5 : 1.5 351

III ZEUS D∗± HERA-II [20] 5 : 1000 0.02 : 0.70 1.5 : 20.0 −1.5 : 1.5 363

IV ZEUS D∗± 98-00 [6] 1.5 : 1000 0.02 : 0.70 1.5 : 15.0 −1.5 : 1.5 82

Table 1. Data sets used in the combination. For each data set the respective kinematic range and

the integrated luminosity, L, are given.

with a precision of 3.2% for the H1 measurements [15, 18] and of about 2% for the ZEUS

measurements [6, 20, 57].

Combinations are made for single- and double-differential cross sections. In table 1

the datasets3 used for these combinations are listed together with their visible phase-

space regions and integrated luminosities. The datasets I–III are used to determine single-

differential combined cross sections as a function of the D∗± meson’s transverse momen-

tum, pT(D∗), pseudorapidity, η(D∗), and inelasticity, z(D∗) = (E(D∗)− pZ(D∗))/(2Eey),

measured in the laboratory frame, and of Q2 and y. The variables E(D∗), pZ(D∗) and Ee
denote the energy of the D∗± meson, the Z component of the momentum of the D∗± meson

and the incoming electron energy, respectively. Owing to beam-line modifications related

to the HERA-II high-luminosity running [58] the visible phase space of these cross sections

at HERA-II is restricted to Q2 > 5 GeV2, which prevents a combination with earlier D∗±

cross-section measurements for which the phase space extends down to Q2 = 1.5 GeV2.

In the case of the double-differential cross section, d2σ/dydQ2, the kinematic range can

be extended to lower Q2 using HERA-I measurements [4, 6, 10]. In order to minimise the

use of correction factors derived from theoretical calculations, the binning scheme of such

measurements has to be similar to that used for the HERA-II data. One of the HERA-I

measurements, set IV of table 1, satisfies this requirement and is therefore included in

the combination of this double-differential cross section. The visible phase spaces of the

combined single- and double-differential cross sections are summarised in table 2.

The measurements to be combined for the single- and double-differential cross sections

are already corrected to the Born level with a running fine-structure constant α and include

both the charm and beauty contributions to D∗± production. The total expected beauty

contribution is small, varying from ∼ 1% at the lowest Q2 to ∼ 7% at the highest Q2. The

cross sections measured previously [6, 15, 18] are here corrected to the PDG value [38] of

the D0 branching ratio.

3.1 Treatment of data sets for single-differential cross sections

In order to make the input data sets compatible with the phase space quoted in table 2

and with each other, the following corrections are applied before the combination:

3Of the two sets of measurements in [18], that compatible with the above cuts is chosen.
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single double

Range in differential cross section

Q2 (GeV2) 5–1000 1.5–1000

y 0.02–0.7

pT(D∗) (GeV) > 1.5

|η(D∗)| < 1.5

Table 2. Visible phase space of the combined cross sections.

• The H1 collaboration has published measurements of D∗± cross sections separately

for 5 GeV2 < Q2 < 100 GeV2 (set I) and for 100 GeV2 < Q2 < 1000 GeV2 (set II).

Due to the limited statistics at high Q2, a coarser binning in pT(D∗), η(D∗), z(D∗)

and y was used in set II compared to set I. Therefore the cross section in a bin i of

a given observable integrated in the range 5 GeV2 < Q2 < 1000 GeV2 is calculated

according to

σi(5<Q
2/GeV2<1000)=σi(5<Q

2/GeV2<100)

+σNLO
i (100<Q2/GeV2<1000)· σint(100<Q2/GeV2<1000)

σNLO
int (100<Q2/GeV2<1000)

.

(3.1)

Here σint denotes the integrated visible cross section and σNLO stands for the NLO

predictions obtained from HVQDIS. In this calculation both the experimental uncer-

tainties of the visible cross section at high Q2 and the theoretical uncertainties as

described in section 2 are included. The contribution from the region 100 GeV2 <

Q2 < 1000 GeV2 to the full Q2 range amounts to 4% on average and reaches up to

50% at highest pT(D∗).

• The bin boundaries used for the differential cross section as a function of Q2 differ

between sets I, II and set III. At low Q2 this is solved by combining the cross-

section measurements of the first two bins of set I into a single bin. For Q2 >

100 GeV2 no consistent binning scheme could be defined directly from the single-

differential cross-section measurements. However, the measurements of the double-

differential cross sections d2σ/dQ2dy have been performed in a common binning

scheme. By integrating these cross sections in y, single-differential cross sections in Q2

are obtained also for Q2 > 100 GeV2 which can be used directly in the combination.

• The cross-section measurements in set III are restricted to pT(D∗) < 20 GeV while

there is no such limitation in the phase space of the combination. Therefore these

cross sections are corrected for the contribution from the range pT(D∗) > 20 GeV

using HVQDIS. This correction is found to be less than 0.1%.

– 6 –
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3.2 Treatment of data sets for double-differential cross sections

Since the restriction to the same phase space in Q2 does not apply for the combination

of the double-differential cross sections in Q2 and y, the HERA-I measurement, set IV, is

also included in the combination. This allows an extension of the kinematic range down to

Q2 > 1.5 GeV2. The pT(D∗) ranges of the measurements of sets III and IV are corrected

in the same way as for the single-differential cross sections.

To make the binning scheme of the HERA-I measurement compatible with that used

for the HERA-II datasets, the binning for all datasets is revised. Cross sections in the new

bins are obtained from the original bins using the shape of the HVQDIS predictions as

described in section 2. The new binning is given in section 5 (table 9). Bins are kept only

if they satisfied both of the following criteria:

• The predicted fraction of the cross section of the original bin contained in the kine-

matical overlap region in Q2 and y between the original and corrected bins is greater

than 50% (in most bins it is greater than 90%).

• The theoretical uncertainty from the correction procedure is obtained by evaluating

all uncertainties discussed in section 2 and adding them in quadrature. The ratio of

the theoretical uncertainty to the uncorrelated experimental uncertainty is required

to be less than 30%.

This procedure ensures that the effect of the theoretical uncertainties on the combined data

points is small. Most of the HERA-II bins are left unmodified; all of them satisfied the

criteria and are kept. Out of the 31 original HERA-I bins, 26 bins satisfy the criteria and

are kept. The data points removed from the combination mainly correspond to the low-y

region where larger bins were used for the HERA-I data.

4 Combination method

The combination of the data sets uses the χ2 minimisation method developed for the

combination of inclusive DIS cross sections [22, 24], as implemented in the HERAverager

program [59]. For an individual dataset e the contribution to the χ2 function is defined as

χ2
exp,e(m

i, bj) =
∑
i

(
mi −

∑
j γ

i,e
j mibj − µi,e

)2
(δi,e,stat µi,e)

2 + (δi,e,uncormi)2
. (4.1)

Here µi,e is the measured value of the cross section in bin i and γi,ej , δi,e,stat and δi,e,uncor are

the relative correlated systematic, relative statistical and relative uncorrelated systematic

uncertainties, respectively, from the original measurements. The quantities mi express the

values of the expected combined cross section for each bin i and the quantities bj express the

shifts of the correlated systematic-uncertainty sources j, in units of the standard deviation.

Several data sets providing a number of measurements (index e) are represented by a total

χ2 function, which is built from the sum of the χ2
exp,e functions of all data sets

χ2
tot(m

i, bj) =
∑
e

χ2
exp,e(m

i, bj) +
∑
j

b2j . (4.2)

– 7 –
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The combined cross sections mi are obtained by the minimisation of χ2
tot with respect to

mi and bj .

The averaging procedure also provides the covariance matrix of the mi and the un-

certainties of the bj at the minimum. The bj at the minimum and their uncertainties are

referred to as “shift” and “reduction”, respectively. The covariances V of the mi are given

in the form V = Vuncor +
∑

k V
k
sys [23]. The matrix Vuncor is diagonal. Its diagonal elements

correspond to the covariances obtained in a weighted average performed in the absence

of any correlated systematic uncertainties. The covariance matrix contributions V k
sys cor-

respond to correlated systematic uncertainties on the averaged cross sections, such that

the elements of a matrix V k
sys are obtained as (V k

sys)ij = δsys,ki δsys,kj , given a vector δsys,k of

systematic uncertainties. It is worth noting that, in this representation of the covariance

matrix, the number of correlated systematic sources is identical to the number of correlated

systematic sources in the input data sets.

In the present analysis, the correlated and uncorrelated systematic uncertainties are

predominantly of multiplicative nature, i.e. they change proportionally to the central values.

In equation (4.1) the multiplicative nature of these uncertainties is taken into account by

multiplying the relative errors γi,ej and δi,e,uncor by the cross-section expectation mi. In

charm analyses the statistical uncertainty is mainly background dominated. Therefore it

is treated as being independent of mi. For the minimisation of χ2
tot an iterative procedure

is used as described elsewhere [23].

The 55 systematic uncertainties obtained from the original publications were examined

for their correlations. Within each data set, most of the systematic uncertainties are found

to be point-to-point correlated, and are thus treated as fully correlated in the combina-

tion. In total there are 23 correlated experimental systematic sources and 5 theory-related

uncertainty sources. A few are found to be uncorrelated and added in quadrature. For the

combination of single-differential cross sections the uncorrelated uncertainties also include a

theory-related uncertainty from the corrections discussed in section 3, which varies between

0 and 10% of the total uncertainty and is added in quadrature. Asymmetric systematic

uncertainties were symmetrised to the larger deviation before performing the combination.

Except for the branching-ratio uncertainty, which was treated as correlated, all experi-

mental systematic uncertainties were treated as independent between the H1 and ZEUS

data sets. Since the distributions in pT(D∗), η(D∗), z(D∗), Q2 and y are not statistically

independent, each distribution is combined separately.

5 Combined cross sections

The results of combining the HERA-II measurements [15, 18, 20] as a function of pT(D∗),

η(D∗), z(D∗), Q2 and y are given in tables 3–7, together with their uncorrelated and

correlated uncertainties.4 The total uncertainties are obtained by adding the uncorrelated

and correlated uncertainties in quadrature.

4A detailed breakdown of correlated uncertainties can be found on http://www.desy.de/h1zeus/

dstar2015/.
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pT(D∗) dσ
dpT(D∗)

δuncor δcor δtot

(GeV) (nb/GeV) (%) (%) (%)

1.50 : 1.88 2.35 6.4 4.7 8.0

1.88 : 2.28 2.22 4.9 4.2 6.4

2.28 : 2.68 1.98 3.7 4.0 5.5

2.68 : 3.08 1.55 3.5 3.7 5.1

3.08 : 3.50 1.20 3.7 3.5 5.1

3.50 : 4.00 9.29× 10−1 3.2 3.4 4.7

4.00 : 4.75 6.14× 10−1 3.0 3.5 4.6

4.75 : 6.00 3.19× 10−1 3.1 3.3 4.5

6.00 : 8.00 1.15× 10−1 3.8 3.7 5.3

8.00 : 11.00 3.32× 10−2 5.4 3.7 6.5

11.00 : 20.00 3.80× 10−3 10.4 6.4 12.2

Table 3. The combined differential D∗±-production cross section in the phase space given in

table 2 as a function of pT(D∗), with its uncorrelated (δuncor), correlated (δcor) and total (δtot)

uncertainties.

η(D∗) dσ
dη(D∗) δuncor δcor δtot

(nb) (%) (%) (%)

−1.50 : −1.25 1.36 5.8 4.3 7.2

−1.25 : −1.00 1.52 4.6 4.0 6.1

−1.00 : −0.75 1.59 4.6 4.0 6.1

−0.75 : −0.50 1.79 3.8 3.5 5.2

−0.50 : −0.25 1.83 3.8 3.3 5.1

−0.25 : 0.00 1.89 3.8 3.7 5.3

0.00 : 0.25 1.86 4.0 3.4 5.2

0.25 : 0.50 1.88 4.0 3.6 5.4

0.50 : 0.75 1.91 4.1 3.5 5.4

0.75 : 1.00 1.92 4.3 4.0 5.9

1.00 : 1.25 2.08 4.7 4.0 6.1

1.25 : 1.50 1.81 6.3 4.8 7.9

Table 4. The combined differential D∗±-production cross section in the phase space given in table 2

as a function of η(D∗), with its uncorrelated (δuncor), correlated (δcor) and total (δtot) uncertainties.

– 9 –
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z(D∗) dσ
dz(D∗) δuncor δcor δtot

(nb) (%) (%) (%)

0.00 : 0.10 3.28 9.5 5.9 11.2

0.10 : 0.20 7.35 4.8 6.3 7.9

0.20 : 0.32 8.61 3.5 4.6 5.7

0.32 : 0.45 8.92 2.7 3.9 4.7

0.45 : 0.57 8.83 1.8 4.0 4.3

0.57 : 0.80 4.78 2.4 5.1 5.6

0.80 : 1.00 0.63 8.1 10.2 13.0

Table 5. The combined differential D∗±-production cross section in the phase space given in table 2

as a function of z(D∗), with its uncorrelated (δuncor), correlated (δcor) and total (δtot) uncertainties.

Q2 dσ
dQ2 δuncor δcor δtot

(GeV2) (nb/GeV2) (%) (%) (%)

5 : 8 4.74× 10−1 4.0 5.0 6.4

8 : 10 2.96× 10−1 4.3 3.8 5.8

10 : 13 2.12× 10−1 3.8 4.0 5.6

13 : 19 1.24× 10−1 3.2 3.8 5.0

19 : 28 7.26× 10−2 3.5 3.6 5.0

28 : 40 3.97× 10−2 3.7 4.0 5.5

40 : 60 1.64× 10−2 4.4 4.7 6.4

60 : 100 7.45× 10−3 5.2 3.9 6.5

100 : 158 2.08× 10−3 7.2 5.3 9.0

158 : 251 8.82× 10−4 7.6 5.0 9.1

251 : 1000 7.50× 10−5 12.0 6.7 13.3

Table 6. The combined differential D∗±-production cross section in the phase space given in table 2

as a function of Q2, with its uncorrelated (δuncor), correlated (δcor) and total (δtot) uncertainties.
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y dσ
dy δuncor δcor δtot

(nb) (%) (%) (%)

0.02 : 0.05 12.1 5.8 9.1 10.8

0.05 : 0.09 18.8 3.9 4.6 6.0

0.09 : 0.13 17.0 3.4 4.3 5.5

0.13 : 0.18 13.4 3.7 4.2 5.6

0.18 : 0.26 11.2 3.4 3.7 5.0

0.26 : 0.36 7.65 3.7 4.2 5.6

0.36 : 0.50 4.78 4.0 5.3 6.6

0.50 : 0.70 2.65 5.6 6.4 8.5

Table 7. The combined differential D∗±-production cross section in the phase space given in table 2

as a function of y, with its uncorrelated (δuncor), correlated (δcor) and total (δtot) uncertainties.

The individual data sets and the results of the combination are shown in figures 1–5.

The consistency of the data sets as well as the reduction of the uncertainties are illus-

trated further by the insets at the bottom of figures 1 and 4. The combinations in the

different variables have a χ2 probability varying between 15% and 87%, i.e. the data sets

are consistent. The systematic shift between the two input data sets is covered by the re-

spective correlated uncertainties. The shifts and reductions of the correlated uncertainties

are given in table 8. The improvement of the total correlated uncertainty is due to small

reductions of many sources. While the effective doubling of the statistics of the combined

result reduces the uncorrelated uncertainties, the correlated uncertainties of the combined

cross sections are reduced through cross-calibration effects between the two experiments.

Typically, both effects contribute about equally to the reduction of the total uncertainty.

The combined cross sections as a function of pT(D∗), η(D∗), z(D∗), Q2 and y are

compared to NLO predictions5 in figures 6–10. In general, the predictions describe the

data well. The data reach an overall precision of about 5% over a large fraction of the

measured phase space, while the typical theoretical uncertainty ranges from 30% at low

Q2 to 10% at high Q2. The data points in the different distributions are statistically and

systematically correlated. No attempt is made in this paper to quantify the correlations

between bins taken from two different distributions. Thus quantitative comparisons of

theory to data can only be made for individual distributions.

In order to study the impact of the current theoretical uncertainties in more detail,

the effect of some variations on the predictions is shown separately in figure 11, compared

to the same data as in figures 6, 8 and 10. Only the variations with the largest impact on

the respective distribution are shown in each case.

1. The NLO prediction as a function of pT(D∗) (figure 11, top) describes the data better

5The NLO QCD prediction for the beauty contribution to D∗± production, calculated as described in

section 2, can be found on http://www.desy.de/h1zeus/dstar2015/.
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Figure 1. Differential D∗±-production cross section as a function of pT(D∗). The open triangles

and squares are the cross sections before combination, shown with a small horizontal offset for

better visibility. The filled points are the combined cross sections. The inner error bars indicate

the uncorrelated part of the uncertainties. The outer error bars represent the total uncertainties.

The histogram indicates the binning used to calculate the cross sections. The bottom part shows

the ratio of these cross sections with respect to the central value of the combined cross sections.
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Figure 2. Differential D∗±-production cross section as a function of η(D∗). The open triangles

and squares are the cross sections before combination, shown with a small horizontal offset for

better visibility. The filled points are the combined cross sections. The inner error bars indicate

the uncorrelated part of the uncertainties. The outer error bars represent the total uncertainties.

The histogram indicates the binning used to calculate the cross sections.
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Figure 3. Differential D∗±-production cross section as a function of z(D∗). The open triangles
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better visibility. The filled points are the combined cross sections. The inner error bars indicate

the uncorrelated part of the uncertainties. The outer error bars represent the total uncertainties.

The histogram indicates the binning used to calculate the cross sections.
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visibility. The filled points are the combined cross sections. The inner error bars indicate the

uncorrelated part of the uncertainties. The outer error bars represent the total uncertainties. The

histogram indicates the binning used to calculate the cross sections. The bottom part shows the

ratio of these cross sections with respect to the central value of the combined cross sections.
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HVQDIS (including the beauty contribution) and their uncertainty band. A customised NLO
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Data set Name
dσ
dQ2

dσ
dy

dσ
dpT(D∗)

dσ
dη(D∗)

dσ
dz(D∗)

d2σ
dQ2dy

sh red sh red sh red sh red sh red sh red

I,II H1 CJC efficiency 0.8 0.9 0.3 0.9 0.5 0.9 0.5 0.9 0.4 0.9 0.6 0.8

I,II H1 luminosity 0.5 0.9 0.4 0.9 0.6 0.9 0.6 0.9 0.4 0.9 0.1 0.9

I,II H1 MC PDF 0.1 1.0 0.1 1.0 0.2 1.0 0.2 1.0 0.1 1.0 0.0 1.0

I,II H1 electron energy 0.2 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.7 0.9 0.0 0.8

I,II H1 electron polar angle 0.2 1.0 0.1 1.0 0.1 1.0 0.2 1.0 0.2 1.0 0.3 0.9

I,II H1 hadronic energy scale 0.1 1.0 0.2 0.9 0.0 1.0 0.0 1.0 −1.0 0.7 0.0 1.0

II H1 fragmentation threshold at high Q2 0.0 1.0 0.0 1.0

I,II H1 alternative MC model 0.4 0.9 0.4 0.9 0.1 1.0 0.0 1.0 −1.0 0.8 1.2 0.7

I,II H1 alternative MC fragmentation 0.0 1.0 0.0 1.0 0.0 1.0 −0.1 1.0 0.2 1.0 0.3 0.9

I,II H1 fragmentation threshold 0.0 1.0 −0.4 0.9 0.2 1.0 0.0 1.0 0.6 0.9 0.2 0.8

I H1 high Q2 uncertainty 0.1 1.0 0.0 0.9 0.1 1.0 0.1 1.0

III ZEUS hadronic energy scale 0.0 1.0 −0.1 0.8 0.0 1.0 0.0 1.0 −0.9 0.9 −0.5 0.7

III ZEUS electron energy scale 0.1 0.9 0.2 0.9 0.0 1.0 0.2 1.0 0.0 1.0 0.4 0.7

III ZEUS pT(πs) correction −0.1 1.0 −0.1 1.0 −0.1 1.0 −0.3 1.0 0.0 1.0 −0.7 0.9

III ZEUS M(Kπ) window variation −0.3 0.8 −0.7 0.8 0.4 0.6 −0.3 0.7 0.5 0.8 −0.7 0.9

III ZEUS tracking efficiency −0.2 0.9 −0.4 0.9 −0.4 0.9 −0.2 0.9 −0.2 0.9 −0.7 1.0

III ZEUS b MC normalisation 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.1 1.0 0.0 1.0

III ZEUS PHP MC normalisation 0.0 1.0 −0.1 1.0 0.0 1.0 −0.1 1.0 0.1 1.0 −0.3 1.0

III ZEUS diffractive MC normalisation 0.0 1.0 0.1 0.9 0.2 1.0 0.0 1.0 0.0 1.0 0.7 0.9

III ZEUS MC reweighting (pT(D∗) and Q2) 0.3 0.9 0.0 1.0 −0.1 1.0 0.0 1.0 0.0 1.0 0.6 0.9

III ZEUS MC reweighting (η(D∗)) 0.0 1.0 0.0 0.8 −0.2 1.0 −0.3 1.0 −0.2 1.0 0.4 0.8

III ZEUS luminosity (HERA-II) −0.2 1.0 −0.1 1.0 −0.2 1.0 −0.2 1.0 −0.1 1.0 −0.7 0.9

IV ZEUS luminosity (98-00) 0.8 0.9

I-IV Theory mc variation 0.0 1.0

I-IV Theory µr, µf variation 0.0 1.0

I-IV Theory αs variation 0.0 1.0

I-IV Theory longitudunal frag. variation 0.1 1.0

I-IV Theory transverse frag. variation 0.0 1.0

Table 8. Sources of point-to-point correlated uncertainties. For each source the affected data sets

are given, together with the shift (sh) and reduction factor (red) in the combination obtained after

the first iteration. For sources which do not affect the combination of a given differential cross

section, no shifts and reductions are quoted.

– 18 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
9

Q2 y d2σ
dQ2dy δuncor δcor δtot

(GeV2) (nb/GeV2) (%) (%) (%)

1.5 : 3.5 0.02 : 0.09 4.76 12.9 2.5 13.2

0.09 : 0.16 5.50 11.3 2.6 11.5

0.16 : 0.32 3.00 12.0 2.6 12.3

0.32 : 0.70 9.21× 10−1 20.5 2.5 20.7

3.5 : 5.5 0.02 : 0.09 2.22 11.3 2.8 11.6

0.09 : 0.16 1.98 7.9 2.7 8.3

0.16 : 0.32 1.09 20.2 2.7 20.4

0.32 : 0.70 3.47× 10−1 14.6 2.6 14.8

5.5 : 9 0.02 : 0.05 1.06 12.3 4.4 13.1

0.05 : 0.09 1.46 7.8 4.1 8.8

0.09 : 0.16 1.32 5.4 4.3 6.9

0.16 : 0.32 7.73× 10−1 4.9 3.9 6.3

0.32 : 0.70 2.51× 10−1 5.6 4.2 7.0

9 : 14 0.02 : 0.05 5.20× 10−1 13.0 6.6 14.6

0.05 : 0.09 7.68× 10−1 6.6 3.9 7.7

0.09 : 0.16 5.69× 10−1 4.6 2.8 5.4

0.16 : 0.32 4.12× 10−1 4.6 3.1 5.6

0.32 : 0.70 1.51× 10−1 5.6 4.0 6.9

14 : 23 0.02 : 0.05 2.29× 10−1 11.4 6.3 13.0

0.05 : 0.09 3.78× 10−1 6.5 4.1 7.7

0.09 : 0.16 2.90× 10−1 4.8 3.3 5.8

0.16 : 0.32 1.86× 10−1 5.0 3.4 6.0

0.32 : 0.70 6.92× 10−2 6.2 4.4 7.7

23 : 45 0.02 : 0.05 6.91× 10−2 14.8 8.2 16.7

0.05 : 0.09 1.23× 10−1 5.9 3.6 6.9

0.09 : 0.16 1.14× 10−1 4.4 3.0 5.3

0.16 : 0.32 7.42× 10−2 4.3 3.0 5.2

0.32 : 0.70 3.21× 10−2 5.2 3.7 6.4

45 : 100 0.02 : 0.05 6.16× 10−3 33.5 11.1 35.3

0.05 : 0.09 2.70× 10−2 11.0 4.4 11.8

0.09 : 0.16 2.05× 10−2 8.0 3.7 8.8

0.16 : 0.32 1.99× 10−2 5.4 3.2 6.3

0.32 : 0.70 7.84× 10−3 6.9 4.0 7.9

100 : 158 0.02 : 0.32 4.12× 10−3 8.2 4.1 9.2

0.32 : 0.70 2.18× 10−3 11.1 4.1 11.9

158 : 251 0.02 : 0.30 1.79× 10−3 10.2 4.4 11.1

0.30 : 0.70 9.28× 10−4 11.6 4.6 12.5

251 : 1000 0.02 : 0.26 1.31× 10−4 14.5 4.7 15.3

0.26 : 0.70 1.18× 10−4 12.7 5.0 13.6

Table 9. The combined double-differential D∗±-production cross section in the phase space given

in table 2 as a function of Q2 and y, with its uncorrelated (δuncor), correlated (δcor) and total (δtot)

uncertainties.
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by either

• setting the charm-quark pole mass to 1.35 GeV or

• reducing the renormalisation scale by a factor 2 or

• increasing the factorisation scale by a factor 2.

Simultaneous variation of both scales in the same direction would largely compensate

and would therefore have a much smaller effect.

2. The prediction for the z(D∗) distribution (figure 11, bottom left) describes the shape

of the data better if the fragmentation parameters are adjusted such that the bound-

ary between the two lowest fragmentation regions [21] is varied from the default of

70 GeV2 to its lower boundary of 30 GeV2.

3. The preference for a reduced renormalisation scale already observed for pT(D∗) is

confirmed by the z(D∗) distribution (figure 11, bottom right). However, the shape of

the z(D∗) distribution rather prefers variations of the charm mass and the factorisa-

tion scale in the opposite direction to those found for the pT(D∗) distribution. The

distributions of the other kinematic variables do not provide additional information

to these findings [60].

As stated before, within the large uncertainties indicated by the theory bands in fig-

ures 1–5, all distributions are reasonably well described. However, the above study shows

that the different contributions to these uncertainties do not only affect the normalisation,

but also change the shape of different distributions in different ways. It is therefore not

obvious that a variant of the prediction that gives a good description of the distribution in

one variable will also give a good description of the distribution in another.

Based on the study of items 1.–3. above, a ‘customised’ calculation is performed to

demonstrate the possibility of obtaining an improved description of the data in all variables

at the same time, both in shape and normalisation, within the theoretical uncertainties

quoted in section 2. For this calculation, the following choices were made:

• From the three options discussed in item 1. above, the second is chosen, i.e. the

renormalisation scale is reduced by a factor 2, with the factorisation scale unchanged.

• The change of the fragmentation parameter ŝ1 = 30 GeV2, as discussed in item 2.

above, is applied.

• At this stage, the resulting distributions are still found to underestimate the data

normalisation. As the renormalisation and factorisation scales are recommended to

differ by at most a factor of two [61], the only significant remaining handle arising

from items 1. and 3. is the charm-quark pole mass. This mass is set to 1.4 GeV, a

value which is also compatible with the partially overlapping data used for a previous

dedicated study [21] of the charm-quark mass.

• All other parameters, which have a much smaller impact [60] than those discussed

above, are left at their central settings as described in section 2.
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The result of this customised calculation is indicated as a dotted line in figures 6–

10. A reasonable agreement with data is achieved simultaneously in all variables. This

a posteriori adjustment of theory parameters is not a prediction, but it can be taken as

a hint in which direction theoretical and phenomenological developments could proceed.

The strong improvement of the description of the data relative to the central prediction

through the customisation of the renormalisation scale is in line with the expectation that

higher-order calculations will be helpful to obtain a more stringent statement concerning

the agreement of perturbative QCD predictions with the data. The improvement from the

customisation of one of the fragmentation parameters and the still not fully satisfactory

description of the z(D∗) distribution indicate that further dedicated experimental and

theoretical studies of the fragmentation treatment might be helpful.

In general, the precise single-differential distributions resulting from this combination,

in particular those as a function of pT(D∗), η(D∗) and z(D∗), are sensitive to theoretical

and phenomenological parameters in a way which complements the sensitivity of more

inclusive variables like Q2 and y.

The combined double-differential cross sections with the uncorrelated, correlated and

total uncertainties6 as a function of Q2 and y are given in table 9. The total uncertainty

is obtained by adding the uncorrelated and correlated uncertainties in quadrature. The

individual data sets as well as the results of the combination are shown in figure 12.

Including data set IV slightly reduces the overall cross-section normalisation with respect

to the combination of sets I–III only. The pull distribution of the combination is shown in

figure 13. The combination has a χ2 probability of 84%, i.e. all data sets are consistent.

The shifts and reductions of the correlated uncertainties are given in table 8.

These combined cross sections are compared to NLO predictions7 in figure 14. The

customised calculation is also shown. In general the predictions describe the data well. The

data have a precision of about 5–10% over a large fraction of the measured phase space,

while the estimated theoretical uncertainty ranges from 30% at low Q2 to 10% at high Q2.

As well as the single-differential distributions, these double-differential distributions give

extra input to test further theory improvements.

6 Conclusions

Measurements of D∗±-production cross sections in deep-inelastic ep scattering by the H1

and ZEUS experiments are combined at the level of visible cross sections, accounting for

their systematic correlations. The data sets were found to be consistent and the combined

data have significantly reduced uncertainties. In contrast to the earlier charm combination

at the level of reduced cross sections, the present combination does not have significant

theory-related uncertainties and in addition distributions of kinematic variables of the

D∗± mesons are obtained. The combined data are compared to NLO QCD predictions.

6A detailed breakdown of correlated uncertainties can be found on http://www.desy.de/h1zeus/

dstar2015/.
7The NLO QCD prediction for the beauty contribution to D∗± production, calculated as described in

section 2, can be found on http://www.desy.de/h1zeus/dstar2015/.
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The predictions describe the data well within their uncertainties. Higher order calculations

would be helpful to reduce the theory uncertainty to a level more comparable with the data

precision. Further improvements in the treatment of heavy-quark fragmentation would also

be desirable.
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M. Kuze51, M.P.J. Landon29, W. Lange62, P. Laycock28, A. Lebedev34, B.B. Levchenko35,

S. Levonian17, A. Levy49, V. Libov17, S. Limentani41, K. Lipka17,b23, M. Lisovyi17, B. List17,

J. List17, E. Lobodzinska17, B. Lobodzinski36, B. Löhr17, E. Lohrmann16, A. Longhin40,a14,
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