1,914 research outputs found

    Risk factors for presentation to hospital with severe anaemia in Tanzanian children: a case-control study.

    Get PDF
    In malaria endemic areas anaemia is a usually silent condition that nevertheless places a considerable burden on health services. Cases of severe anaemia often require hospitalization and blood transfusions. The objective of this study was to assess risk factors for admission with anaemia to facilitate the design of anaemia control programmes. We conducted a prospective case-control study of children aged 2-59 months admitted to a district hospital in southern Tanzania. There were 216 cases of severe anaemia [packed cell volume (PCV) < 25%] and 234 age-matched controls (PCV > or = 25%). Most cases [55.6% (n = 120)] were < 1 year of age. Anaemia was significantly associated with the educational level of parents, type of accommodation, health-seeking behaviour, the child's nutritional status and recent and current medical history. Of these, the single most important factor was Plasmodium falciparum parasitaemia [OR 4.3, 95% confidence interval (CI) 2.9-6.5, P < 0.001]. Multivariate analysis showed that increased recent health expenditure [OR 2.2 (95% CI 1.3-3.9), P = 0.005], malnutrition [OR 2.4 (95%CI 1.3-4.3), P < 0.001], living > 10 km from the hospital [OR 3.0 (95% CI 1.9-4.9), P < 0.001], a history of previous blood transfusion [OR 3.8 (95% CI 1.7-9.1), P < 0.001] and P. falciparum parasitaemia [OR 9.5 (95% CI 4.3-21.3), P < 0.001] were independently related to risk of being admitted with anaemia. These findings are considered in terms of the pathophysiological pathway leading to anaemia. The concentration of anaemia in infants and problems of access to health services and adequate case management underline the need for targeted preventive strategies for anaemia control

    Heavy Metal Tolerance in Stenotrophomonas maltophilia

    Get PDF
    Stenotrophomonas maltophilia is an aerobic, non-fermentative Gram-negative bacterium widespread in the environment. S. maltophilia Sm777 exhibits innate resistance to multiple antimicrobial agents. Furthermore, this bacterium tolerates high levels (0.1 to 50 mM) of various toxic metals, such as Cd, Pb, Co, Zn, Hg, Ag, selenite, tellurite and uranyl. S. maltophilia Sm777 was able to grow in the presence of 50 mM selenite and 25 mM tellurite and to reduce them to elemental selenium (Se0) and tellurium (Te0) respectively. Transmission electron microscopy and energy dispersive X-ray analysis showed cytoplasmic nanometer-sized electron-dense Se0 granules and Te0 crystals. Moreover, this bacterium can withstand up to 2 mM CdCl2 and accumulate this metal up to 4% of its biomass. The analysis of soluble thiols in response to ten different metals showed eightfold increase of the intracellular pool of cysteine only in response to cadmium. Measurements by Cd K-edge EXAFS spectroscopy indicated the formation of Cd-S clusters in strain Sm777. Cysteine is likely to be involved in Cd tolerance and in CdS-clusters formation. Our data suggest that besides high tolerance to antibiotics by efflux mechanisms, S. maltophilia Sm777 has developed at least two different mechanisms to overcome metal toxicity, reduction of oxyanions to non-toxic elemental ions and detoxification of Cd into CdS

    Seasonal Growth Rate of the Sponge Haliclona oculata (Demospongiae: Haplosclerida)

    Get PDF
    The interest in sponges has increased rapidly since the discovery of potential new pharmaceutical compounds produced by many sponges. A good method to produce these compounds by using aquaculture of sponges is not yet available, because there is insufficient knowledge about the nutritional needs of sponges. To gain more insight in the nutritional needs for growth, we studied the growth rate of Haliclona oculata in its natural environment and monitored environmental parameters in parallel. A stereo photogrammetry approach was used for measuring growth rates. Stereo pictures were taken and used to measure volumetric changes monthly during 1 year. Volumetric growth rate of Haliclona oculata showed a seasonal trend with the highest average specific growth rate measured in May: 0.012 ± 0.004 day−1. In our study a strong positive correlation (p < 0.01) was found for growth rate with temperature, algal biomass (measured as chlorophyll a), and carbon and nitrogen content in suspended particulate matter. A negative correlation (p < 0.05) was found for growth rate with salinity, ammonium, nitrate, nitrite, and phosphate. No correlation was found with dissolved organic carbon, suggesting that Haliclona oculata is more dependent on particulate organic carbon

    Determination of circulating Mycobacterium tuberculosis strains and transmission patterns among pulmonary TB patients in Kawempe municipality, Uganda, using MIRU-VNTR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mycobacterial interspersed repetitive units - variable number of tandem repeats (MIRU-VNTR) genotyping is a powerful tool for unraveling clonally complex <it>Mycobacterium tuberculosis </it>(MTB) strains and detection of transmission patterns. Using MIRU-VNTR, MTB genotypes and their transmission patterns among patients with new and active pulmonary tuberculosis (PTB) in Kawempe municipality in Kampala, Uganda was determined.</p> <p>Results</p> <p>MIRU-VNTR genotyping was performed by PCR-amplification of 15 MTB-MIRU loci from 113 cultured specimens from 113 PTB patients (one culture sample per patient). To determine lineages, the genotypes were entered into the MIRU-VNTR<it>plus </it>database [<url>http://www.miru-vntrplus.org/</url>] as numerical codes corresponding to the number of alleles at each locus. Ten different lineages were obtained: Uganda II (40% of specimens), Uganda I (14%), LAM (6%), Delhi/CAS (3%), Haarlem (3%), Beijing (3%), Cameroon (3%), EAI (2%), TUR (2%) and S (1%). Uganda I and Uganda II were the most predominant genotypes. Genotypes for 29 isolates (26%) did not match any strain in the database and were considered unique. There was high diversity of MIRU-VNTR genotypes, with a total of 94 distinct patterns. Thirty four isolates grouped into 15 distinct clusters each with two to four isolates. Eight households had similar MTB strains for both index and contact cases, indicating possible transmission.</p> <p>Conclusion</p> <p>MIRU-VNTR genotyping revealed high MTB strain diversity with low clustering in Kawempe municipality. The technique has a high discriminatory power for genotyping MTB strains in Uganda.</p

    Fish, Fish-Derived n-3 Fatty Acids, and Risk of Incident Atrial Fibrillation in the Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    Results of observational and experimental studies investigating the association between intake of long-chain n-3 polyunsaturated fatty acids (PUFAs) and risk of atrial fibrillation (AF) have been inconsistent.We studied the association of fish and the fish-derived n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with the risk of incident AF in individuals aged 45-64 from the Atherosclerosis Risk in Communities (ARIC) cohort (n = 14,222, 27% African Americans). Intake of fish and of DHA and EPA were measured via food frequency questionnaire. Plasma levels of DHA and EPA were measured in phospholipids in a subset of participants (n = 3,757). Incident AF was identified through the end of 2008 using ECGs, hospital discharge codes and death certificates. Cox proportional hazards regression was used to estimate hazard ratios of AF by quartiles of n-3 PUFAs or by fish intake.During the average follow-up of 17.6 years, 1,604 AF events were identified. In multivariable analyses, total fish intake and dietary DHA and EPA were not associated with AF risk. Higher intake of oily fish and canned tuna was associated with a nonsignificant lower risk of AF (p for trend = 0.09). Phospholipid levels of DHA+EPA were not related to incident AF. However, DHA and EPA showed differential associations with AF risk when analyzed separately, with lower risk of AF in those with higher levels of DHA but no association between EPA levels and AF risk.In this racially diverse sample, dietary intake of fish and fish-derived n-3 fatty acids, as well as plasma biomarkers of fish intake, were not associated with AF risk

    Physiological Properties of Cholinergic and Non-Cholinergic Magnocellular Neurons in Acute Slices from Adult Mouse Nucleus Basalis

    Get PDF
    The basal forebrain is a series of nuclei that provides cholinergic input to much of the forebrain. The most posterior of these nuclei, nucleus basalis, provides cholinergic drive to neocortex and is involved in arousal and attention. The physiological properties of neurons in anterior basal forebrain nuclei, including medial septum, the diagonal band of Broca and substantia innominata, have been described previously. In contrast the physiological properties of neurons in nucleus basalis, the most posterior nucleus of the basal forebrain, are unknown.Here we investigate the physiological properties of neurons in adult mouse nucleus basalis. We obtained cell-attached and whole-cell recordings from magnocellular neurons in slices from P42-54 mice and compared cholinergic and non-cholinergic neurons, distinguished retrospectively by anti-choline acetyltransferase immunocytochemistry. The majority (70-80%) of cholinergic and non-cholinergic neurons were silent at rest. Spontaneously active cholinergic and non-cholinergic neurons exhibited irregular spiking at 3 Hz and at 0.3 to 13.4 Hz, respectively. Cholinergic neurons had smaller, broader action potentials than non-cholinergic neurons (amplitudes 64+/-3.4 and 75+/-2 mV; half widths 0.52+/-0.04 and 0.33+/-0.02 ms). Cholinergic neurons displayed a more pronounced slow after-hyperpolarization than non-cholinergic neurons (13.3+/-2.2 and 3.6+/-0.5 mV) and were unable to spike at high frequencies during tonic current injection (maximum frequencies of approximately 20 Hz and >120 Hz).Our results indicate that neurons in nucleus basalis share similar physiological properties with neurons in anterior regions of the basal forebrain. Furthermore, cholinergic and non-cholinergic neurons in nucleus basalis can be distinguished by their responses to injected current. To our knowledge, this is the first description of the physiological properties of cholinergic and non-cholinergic neurons in the posterior aspects of the basal forebrain complex and the first study of basal forebrain neurons from the mouse

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    The Population Genetics of Pseudomonas aeruginosa Isolates from Different Patient Populations Exhibits High-Level Host Specificity

    Get PDF
    Objective To determine whether highly prevalent P. aeruginosa sequence types (ST) in Dutch cystic fibrosis (CF) patients are specifically linked to CF patients we investigated the population structure of P. aeruginosa from different clinical backgrounds. We first selected the optimal genotyping method by comparing pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and multilocus variable number tandem-repeat analysis (MLVA). Methods Selected P. aeruginosa isolates (n = 60) were genotyped with PFGE, MLST and MLVA to determine the diversity index (DI) and congruence (adjusted Rand and Wallace coefficients). Subsequently, isolates from patients admitted to two different ICUs (n = 205), from CF patients (n = 100) and from non-ICU, non-CF patients (n = 58, of which 19 were community acquired) were genotyped with MLVA to determine distribution of genotypes and genetic diversity. Results Congruence between the typing methods was >79% and DIs were similar and all >0.963. Based on costs, ease, speed and possibilities to compare results between labs an adapted MLVA scheme called MLVA9-Utrecht was selected as the preferred typing method. In 363 clinical isolates 252 different MLVA types (MTs) were identified, indicating a highly diverse population (DI = 0.995; CI = 0.993–0.997). DI levels were similarly high in the diverse clinical sources (all >0.981) and only eight genotypes were shared. MTs were highly specific (>80%) for the different patient populations, even for similar patient groups (ICU patients) in two distinct geographic regions, with only three of 142 ICU genotypes detected in both ICUs. The two major CF clones were unique to CF patients. Conclusion The population structure of P. aeruginosa isolates is highly diverse and population specific without evidence for a core lineage in which major CF, hospital or community clones co-cluster. The two genotypes highly prevalent among Dutch CF patients appeared unique to CF patients, suggesting specific adaptation of these clones to the CF lung

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore