1,765 research outputs found

    Current-induced two-level fluctuations in pseudo spin-valves (Co/Cu/Co) nanostructures

    Full text link
    Two-level fluctuations of the magnetization state of pseudo spin-valve pillars Co(10 nm)/Cu(10 nm)/Co(30 nm) embedded in electrodeposited nanowires (~40 nm in diameter, 6000 nm in length) are triggered by spin-polarized currents of 10^7 A/cm^2 at room temperature. The statistical properties of the residence times in the parallel and antiparallel magnetization states reveal two effects with qualitatively different dependences on current intensity. The current appears to have the effect of a field determined as the bias field required to equalize these times. The bias field changes sign when the current polarity is reversed. At this field, the effect of a current density of 10^7 A/cm^2 is to lower the mean time for switching down to the microsecond range. This effect is independent of the sign of the current and is interpreted in terms of an effective temperature for the magnetization.Comment: 4 pages, 5 figures, revised version, to be published in Phys. Rev. Let

    Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?

    Full text link
    © Author(s) 2016. The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (Corg) content in terrestrial soils and marine sediments has been correlated with mud content (i.e., silt and clay, particle sizes <63μm), however, empirical tests of this theory are lacking for coastal vegetated ecosystems. Here, we compiled data (n Combining double low line 1345) on the relationship between Corg and mud contents in seagrass ecosystems (79 cores) and adjacent bare sediments (21 cores) to address whether mud can be used to predict soil Corg content. We also combined these data with the ?13C signatures of the soil Corg to understand the sources of Corg stores. The results showed that mud is positively correlated with soil Corg content only when the contribution of seagrass-derived Corg to the sedimentary Corg pool is relatively low, such as in small and fast-growing meadows of the genera Zostera, Halodule and Halophila, and in bare sediments adjacent to seagrass ecosystems. In large and long-living seagrass meadows of the genera Posidonia and Amphibolis there was a lack of, or poor relationship between mud and soil Corg content, related to a higher contribution of seagrass-derived Corg to the sedimentary Corg pool in these meadows. The relatively high soil Corg contents with relatively low mud contents (e.g., mud-Corg saturation) in bare sediments and Zostera, Halodule and Halophila meadows was related to significant allochthonous inputs of terrestrial organic matter, while higher contribution of seagrass detritus in Amphibolis and Posidonia meadows disrupted the correlation expected between soil Corg and mud contents. This study shows that mud is not a universal proxy for blue carbon content in seagrass ecosystems, and therefore should not be applied generally across all seagrass habitats. Mud content can only be used as a proxy to estimate soil Corg content for scaling up purposes when opportunistic and/or low biomass seagrass species (i.e., Zostera, Halodule and Halophila) are present (explaining 34 to 91% of variability), and in bare sediments (explaining 78% of the variability). The results obtained could enable robust scaling up exercises at a low cost as part of blue carbon stock assessments

    Measuring the gas content of low-mass planets orbiting F-stars

    Get PDF
    Context. Giant planets are known to dominate the long-term stability of planetary systems due to their prevailing gravitational interactions, but they are also thought to play an important role in planet formation. Observational constraints improve our understanding of planetary formation processes such as the delivery of volatile-rich planetesimals from beyond the ice line into the inner planetary system. Additional constraints may come from studies of the atmosphere, but almost all such studies of the atmosphere investigate the detection of certain species, and abundances are not routinely quantitatively measured. Aims. Accurate measurements of planetary bulk parameters – that is, mass and density – provide constraints on the inner structure and chemical composition of transiting planets. This information provides insight into properties such as the amounts of volatile species, which in turn can be related to formation and evolution processes. Methods. The Transiting Exoplanet Survey Satellite (TESS) reported a planetary candidate around HD 190622 (TOI-1054), which was subsequently validated and found to merit further characterization with photometric and spectroscopic facilities. The KESPRINT collaboration used data from the High Accuracy Radial Velocity Planet Searcher (HARPS) to independently confirm the planetary candidate, securing its mass, and revealing the presence of an outer giant planet in the system. The CHEOPS consortium invested telescope time in the transiting target in order to reduce the uncertainty on the radius, improving the characterization of the planet. Results. We present the discovery and characterization of the planetary system around HD 190622 (TOI-1054). This system hosts one transiting planet, which is smaller than Neptune (3.087-0.053+0.058REarth, 7.7 ± 1.0 MEarth) but has a similar bulk density (1.43 ± 0.21 g cm−3) and an orbital period of 16 days; and a giant planet, not known to be transiting, with a minimum mass of 227.0 ± 6.7 MEarth in an orbit with a period of 315 days. Conclusions. Our measurements constrain the structure and composition of the transiting planet. HD 190622b has singular properties among the known population of transiting planets, which we discuss in detail. Among the sub-Neptune-sized planets known today, this planet stands out because of its large gas content

    Spin mixing processes in magnetic nanostructures detected by thermoelectric measurements

    Get PDF
    Spin-dependent transport properties of magnetic nanostructures have been investigated by means of magneto-thermogalvanic voltage measurements: the ac voltage response to an ac temperature oscillation is measured for various magnetic nanostructures under dc current. The samples studied include Co/Cu multilayered nanowires, homogeneous Ni nanowires and cobalt clusters embedded in copper films. The magnetic field dependence of this signal is always larger than the magneto-resistance (MR) and may be anisotropic even when the MR is not. A thermodynamic argument introduces spin mixing as the main process measured by this novel thermoelectric measurement technique. This effect is not observed in magnetite as can be justified by the absence of an accessible second spin channel

    Effects of Long-term Exposure on E-glass Composite Material Subjected to Stress Corrosion in a Saline Medium

    Full text link
    [EN] This work provides an insight on very long-term degradation of polyester-fiber glass composites immersed more than 30,000 h in saline medium under service stresses. Samples were loaded under bending conditions with stresses both in the elastic and plastic fields, with the result that characteristics in a flexural mode were able to be determined and the ensuing decrease in characteristics was fitted to an exponential model. The degree of losses ranged from 25 to 31% for the bending modulus, from 28 to 35% for the flexural strength, and from 40 to 51% for the specific fracture energy. The most notable losses were for specimens immersed in artificial sea water under a continuous stress of 140 MPa, corresponding to the plastic behavior of the material. Although the existence of matrix plasticization is doubtful, the osmotic effects of the diffusion on the matrix and the junction to the fibers, the presence of microcracks, and the effects of chemical ions in the medium on the surface fiber composition became evident in the strength degradation of the material.Segovia López, EF.; Salvador Moya, MD.; Sahuquillo Navarro, O.; Vicente Escuder, Á. (2007). Effects of Long-term Exposure on E-glass Composite Material Subjected to Stress Corrosion in a Saline Medium. Journal of Composite Materials. 41(17):2119-2128. doi:10.1177/0021998307074134S21192128411

    HPV infection and immunochemical detection of cell-cycle markers in verrucous carcinoma of the penis

    Get PDF
    Penile verrucous carcinoma is a rare disease and little is known of its aetiology or pathogenesis. In this study we examined cell-cycle proteins expression and correlation with human papillomavirus infection in a series of 15 pure penile verrucous carcinomas from a single centre. Of 148 penile tumours, 15 (10%) were diagnosed as pure verrucous carcinomas. The expression of the cell-cycle-associated proteins p53, p21, RB, p16INK4A and Ki67 were examined by immunohistochemistry. Human papillomavirus infection was determined by polymerase chain reaction to identify a wide range of virus types. The expression of p16INK4A and Ki67 was significantly lower in verrucous carcinoma than in usual type squamous cell carcinoma, whereas the expression of p53, p21 and RB was not significantly different. p53 showed basal expression in contrast to usual type squamous cell carcinoma. Human papillomavirus infection was present in only 3 out of 13 verrucous carcinomas. Unique low-risk, high-risk and mixed viral infections were observed in each of the three cases. In conclusion, lower levels of p16INK4A and Ki67 expressions differentiate penile verrucous carcinoma from usual type squamous cell carcinoma. The low Ki67 index reflects the slow-growing nature of verrucous tumours. The low level of p16INK4A expression and human papillomavirus detection suggests that penile verrucous carcinoma pathogenesis is unrelated to human papillomavirus infection and the oncogenes and tumour suppressor genes classically altered by virus infection.Peer reviewedFinal Accepted Versio

    Ultralow-temperature device dedicated to soft X-ray magnetic circular dichroism experiments

    Get PDF
    A new ultralow-temperature setup dedicated to soft X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) experiments is described. Two experiments, performed on the DEIMOS beamline (SOLEIL synchrotron), demonstrate the outstanding performance of this new platform in terms of the lowest achievable temperature under X-ray irradiation (T = 220 mK), the precision in controlling the temperature during measurements as well as the speed of the cooling-down and warming-up procedures. Moreover, owing to the new design of the setup, the eddy-current power is strongly reduced, allowing fast scanning of the magnetic field in XMCD experiments; these performances lead to a powerful device for X-ray spectroscopies on synchrotron-radiation beamlines facilities

    Color and stellar population gradients in galaxies. Correlation with mass

    Full text link
    We analyze the color gradients (CGs) of ~50000 nearby SDSS galaxies. From synthetic spectral models based on a simplified star formation recipe, we derive the mean spectral properties, and explain the observed radial trends of the color as gradients of the stellar population age and metallicity (Z). The most massive ETGs (M_* > 10^{11} Msun) have shallow CGs in correspondence of shallow (negative) Z gradients. In the stellar mass range 10^(10.3-10.5) < M_* < 10^(11) Msun, the Z gradients reach their minimum of ~ -0.5 dex^{-1}. At M_* ~ 10^{10.3-10.5} Msun, color and Z gradient slopes suddenly change. They turn out to anti-correlate with the mass, becoming highly positive at the very low masses. We have also found that age gradients anti-correlate with Z gradients, as predicted by hierarchical cosmological simulations for ETGs. On the other side, LTGs have gradients which systematically decrease with mass (and are always more negative than in ETGs), consistently with the expectation from gas infall and SN feedback scenarios. Z is found to be the main driver of the trend of color gradients, especially for LTGs, but age gradients are not negligible and seem to play a significant role too. We have been able to highlight that older galaxies have systematically shallower age and Z gradients than younger ones. Our results for high-mass galaxies are in perfect agreement with predictions based on the merging scenario, while the evolution of LTGs and younger and less massive ETGs seems to be mainly driven by infall and SN feedback. (Abridged)Comment: 20 pages, 16 figures, accepted for publication on MNRAS. This version includes revisions after the referee's report

    Ranked Adjusted Rand: integrating distance and partition information in a measure of clustering agreement

    Get PDF
    BACKGROUND: Biological information is commonly used to cluster or classify entities of interest such as genes, conditions, species or samples. However, different sources of data can be used to classify the same set of entities and methods allowing the comparison of the performance of two data sources or the determination of how well a given classification agrees with another are frequently needed, especially in the absence of a universally accepted "gold standard" classification. RESULTS: Here, we describe a novel measure – the Ranked Adjusted Rand (RAR) index. RAR differs from existing methods by evaluating the extent of agreement between any two groupings, taking into account the intercluster distances. This characteristic is relevant to evaluate cases of pairs of entities grouped in the same cluster by one method and separated by another. The latter method may assign them to close neighbour clusters or, on the contrary, to clusters that are far apart from each other. RAR is applicable even when intercluster distance information is absent for both or one of the groupings. In the first case, RAR is equal to its predecessor, Adjusted Rand (HA) index. Artificially designed clusterings were used to demonstrate situations in which only RAR was able to detect differences in the grouping patterns. A study with larger simulated clusterings ensured that in realistic conditions, RAR is effectively integrating distance and partition information. The new method was applied to biological examples to compare 1) two microbial typing methods, 2) two gene regulatory network distances and 3) microarray gene expression data with pathway information. In the first application, one of the methods does not provide intercluster distances while the other originated a hierarchical clustering. RAR proved to be more sensitive than HA in the choice of a threshold for defining clusters in the hierarchical method that maximizes agreement between the results of both methods. CONCLUSION: RAR has its major advantage in combining cluster distance and partition information, while the previously available methods used only the latter. RAR should be used in the research problems were HA was previously used, because in the absence of inter cluster distance effects it is an equally effective measure, and in the presence of distance effects it is a more complete one
    corecore