171 research outputs found

    The model constraints from the observed trends for the quasi-periodic oscillation in RE J1034+396

    Full text link
    We analyze the time variability of the X-ray emission of RE J1034+396 -- an active galactic nucleus with the first firm detection of a quasi-periodic oscillations (QPO). Based on the results of a wavelet analysis, we find a drift in the QPO central frequency. The change in the QPO frequency correlates with the change in the X-ray flux with a short time delay. The data specifically suggest a linear dependence between the QPO period and the flux, and this gives important constraints on the QPO models. In particular, it excludes explanation in terms of the orbiting hot spot model close to a black hole. Linear structures such as shocks, spiral waves, or very distant flares are favored.Comment: Astronomy & Astrophysics, in pres

    QPO in RE J1034+396: model constraints from observed trends

    Full text link
    We analyze the time variability of the X-ray emission of RE J1034+396, an active galactic nucleus with the first firm detection of a quasi-periodic oscillations (QPO). Based on the results of a wavelet analysis, we find a drift in the QPO central frequency. The change inthe QPO frequency correlates with the change in the X-ray flux with a short time delay. Linear structures such as shocks, spiral waves, orvery distant flares seem to be a favored explanation for this particular QPO event.Comment: to appear in the proceedings to "The Central Kiloparsec in Galactic Nuclei (AHAR2011)", Journal of Physics: Conference Series (JPCS), IOP Publishin

    A ~4.6 h quasi-periodic oscillation in the BL Lacertae PKS 2155-304?

    Full text link
    We report a possible detection of an ~4.6-hour quasi-periodic oscillation (QPO) in the 0.3-10 keV emission of the high-energy peaked blazar PKS 2155-304 from a 64 ks observation by the XMM-Newton EPIC/pn detector. We identify a total modulation of ~5% in the light curve and confirm that nominal period by periodogram, structure function and wavelet analyses. The limited light curve duration allows the capture of only 3.8 cycles of this oscillation and thus precludes a very strong claim for this QPO, despite a nominally high (>3 sigma) statistical significance. We briefly discuss models capable of producing an X-ray QPO of such a period in a blazar.Comment: 4 pages, 6 figures, accepted for publication in A&A Letter

    Binuclear Rhodium(II) Complexes With Selective Antibacterial Activity

    Get PDF
    Binuclear rhodium(II) complexes [Rh2Cl2(μ-OOCR)2(N-N)2] {R = H, Me; N-N = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen)} and [Rh2(μ-OOCR)2(N-N)2(H2O)2](RCOO)2 (R = Me, Et;) have been synthesized and their structure and properties have been studied by electronic, IR and 1H NMR spectroscopy. Antibacterial activity of these complexes against Escherichia coli and Staphylococcus aureus has been investigated. The most active antibacterial agents against E. coli were [Rh2Cl2(μ-OOCR)2(N-N)2] and [Rh2(μ-OOCR)2(N-N)2(H2O)2](RCOO)2 {R = H and Me} which were considerably more active than the appropriate nitrogen ligands. The complexes show low activity against S. aureus. The activity of the complexes [Rh2(OOCR)2(N-N)2(H2O)2](OOCR)2 against E. coli decreases in the series: R=H≅CH3>C2H5>C3H7≅C4H9. The reverse order was found in the case of S. aureus

    Cell starvation increases uptake of extracellular Thymosin β4 and its complexes with calcium

    Get PDF
    Cell metastasis is the main cause of cancer mortality. Inhibiting early events during cell metastasis and invasion could significantly improve cancer prognosis, but the initial mechanisms of cell transition and migration are barely known. Calcium regulates cell migration, whilst Thymosin β4 is a G-actin and iron binding peptide associated with tumor metastasis and ferroptosis. Under normal cell growth conditions, intracellular free calcium ions and Thymosin β4 concentrations are strictly regulated, and are not influenced by extracellular supplementation. However, cell starvation decreases intracellular Thymosin β4 and increases extracellular peptide uptake above the normal range. Unexpectedly, cell starvation significantly increases internalization of extracellular Ca2+/Thymosin β4 complexes. Elucidating the role of Ca2+/Thymosin β4 in the early events of metastasis will likely be important in the future to develop therapies targeting metastasis

    Quasi-Periodic Pulsations in Solar Flares: new clues from the Fermi Gamma-Ray Burst Monitor

    Full text link
    In the last four decades it has been observed that solar flares show quasi-periodic pulsations (QPPs) from the lowest, i.e. radio, to the highest, i.e. gamma-ray, part of the electromagnetic spectrum. To this day, it is still unclear which mechanism creates such QPPs. In this paper, we analyze four bright solar flares which show compelling signatures of quasi-periodic behavior and were observed with the Gamma-Ray Burst Monitor (\gbm) onboard the Fermi satellite. Because GBM covers over 3 decades in energy (8 keV to 40 MeV) it can be a key instrument to understand the physical processes which drive solar flares. We tested for periodicity in the time series of the solar flares observed by GBM by applying a classical periodogram analysis. However, contrary to previous authors, we did not detrend the raw light curve before creating the power spectral density spectrum (PSD). To assess the significance of the frequencies we made use of a method which is commonly applied for X-ray binaries and Seyfert galaxies. This technique takes into account the underlying continuum of the PSD which for all of these sources has a P(f) ~ f^{-\alpha} dependence and is typically labeled red-noise. We checked the reliability of this technique by applying it to a solar flare which was observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) which contains, besides any potential periodicity from the Sun, a 4 s rotational period due to the rotation of the spacecraft around its axis. While we do not find an intrinsic solar quasi-periodic pulsation we do reproduce the instrumental periodicity. Moreover, with the method adopted here, we do not detect significant QPPs in the four bright solar flares observed by GBM. We stress that for the purpose of such kind of analyses it is of uttermost importance to appropriately account for the red-noise component in the PSD of these astrophysical sources.Comment: accepted by A&

    Kinetic hierarchy and propagation of chaos in biological swarm models

    Get PDF
    We consider two models of biological swarm behavior. In these models, pairs of particles interact to adjust their velocities one to each other. In the first process, called 'BDG', they join their average velocity up to some noise. In the second process, called 'CL', one of the two particles tries to join the other one's velocity. This paper establishes the master equations and BBGKY hierarchies of these two processes. It investigates the infinite particle limit of the hierarchies at large time-scale. It shows that the resulting kinetic hierarchy for the CL process does not satisfy propagation of chaos. Numerical simulations indicate that the BDG process has similar behavior to the CL process

    Exploring cell surface markers and cell-cell interactions of human breast milk stem cells

    Get PDF
    Background: Breakthrough studies have shown that pluripotent stem cells are present in human breast milk. The expression of pluripotency markers by breast milk cells is heterogeneous, relating to cellular hierarchy, from early-stage multi-lineage stem cells to fully differentiated mammary epithelial cells, as well as weeks of gestation and days of lactation. Design and methods: Here, we qualitatively analyze cell marker expression in freshly isolated human breast milk cells, without any manipulation that could influence protein expression. Moreover, we use electron microscopy to investigate cell-cell networks in breast milk for the first time, providing evidence of active intercellular communication between cells expressing different cellular markers. Results: The immunocytochemistry results of human breast milk cells showed positive staining in all samples for CD44, CD45, CD133, and Ki67 markers. Variable positivity was present with P63, Tβ4 and CK14 markers. No immunostaining was detected for Wt1, nestin, Nanog, OCT4, SOX2, CK5, and CD34 markers. Cells isolated from human breast milk form intercellular connections, which together create a cell-to-cell communication network. Conclusions: Cells freshly isolated form human breast milk, without particular manipulations, show heterogeneous expression of stemness markers. The studied milk staminal cells show "pluripotency" at different stages of differentiation, and are present as single cells or grouped cells. The adjacent cell interactions are evidenced by electron microscopy, which showed the formation of intercellular connections, numerous contact regions, and thin pseudopods

    The complex behaviour of the microquasar GRS 1915+105 in the rho class observed with BeppoSAX. I: Timing analysis

    Full text link
    GRS 1915+105 was observed by BeppoSAX for about 10 days in October 2000. For about 80% of the time, the source was in the variability class ρ\rho, characterised by a series of recurrent bursts. We describe the results of the timing analysis performed on the MECS (1.6--10 keV) and PDS (15--100 keV) data. The X-ray count rate from \grss showed an increasing trend with different characteristics in the various energy bands. Fourier and wavelet analyses detect a variation in the recurrence time of the bursts, from 45--50 s to about 75 s, which appear well correlated with the count rate. From the power distribution of peaks in Fourier periodograms and wavelet spectra, we distinguished between the {\it regular} and {\it irregular} variability modes of the ρ\rho class, which are related to variations in the count rate in the 3--10 keV range. We identified two components in the burst structure: the slow leading trail, and the pulse, superimposed on a rather stable level. We found that the change in the recurrence time of the regular mode is caused by the slow leading trails, while the duration of the pulse phase remains far more stable. The evolution in the mean count rates shows that the time behaviour of both the leading trail and the baseline level are very similar to those observed in the 1.6--3 and 15--100 keV ranges, while that of the pulse follows the peak number. These differences in the time behaviour and count rates at different energies indicate that the process responsible for the pulses must produce the strongest emission between 3 and 10 keV, while that associated with both the leading trail and the baseline dominates at lower and higher energiesComment: Astronomy and Astrophysics, in pres
    corecore