1,070 research outputs found

    All speed scheme for the low mach number limit of the Isentropic Euler equation

    Full text link
    An all speed scheme for the Isentropic Euler equation is presented in this paper. When the Mach number tends to zero, the compressible Euler equation converges to its incompressible counterpart, in which the density becomes a constant. Increasing approximation errors and severe stability constraints are the main difficulty in the low Mach regime. The key idea of our all speed scheme is the special semi-implicit time discretization, in which the low Mach number stiff term is divided into two parts, one being treated explicitly and the other one implicitly. Moreover, the flux of the density equation is also treated implicitly and an elliptic type equation is derived to obtain the density. In this way, the correct limit can be captured without requesting the mesh size and time step to be smaller than the Mach number. Compared with previous semi-implicit methods, nonphysical oscillations can be suppressed. We develop this semi-implicit time discretization in the framework of a first order local Lax-Friedrich (LLF) scheme and numerical tests are displayed to demonstrate its performances

    Degenerate anisotropic elliptic problems and magnetized plasma simulations

    Full text link
    This paper is devoted to the numerical approximation of a degenerate anisotropic elliptic problem. The numerical method is designed for arbitrary space-dependent anisotropy directions and does not require any specially adapted coordinate system. It is also designed to be equally accurate in the strongly and the mildly anisotropic cases. The method is applied to the Euler-Lorentz system, in the drift-fluid limit. This system provides a model for magnetized plasmas

    An Asymptotic Preserving Scheme for the Euler equations in a strong magnetic field

    Get PDF
    This paper is concerned with the numerical approximation of the isothermal Euler equations for charged particles subject to the Lorentz force. When the magnetic field is large, the so-called drift-fluid approximation is obtained. In this limit, the parallel motion relative to the magnetic field direction splits from perpendicular motion and is given implicitly by the constraint of zero total force along the magnetic field lines. In this paper, we provide a well-posed elliptic equation for the parallel velocity which in turn allows us to construct an Asymptotic-Preserving (AP) scheme for the Euler-Lorentz system. This scheme gives rise to both a consistent approximation of the Euler-Lorentz model when epsilon is finite and a consistent approximation of the drift limit when epsilon tends to 0. Above all, it does not require any constraint on the space and time steps related to the small value of epsilon. Numerical results are presented, which confirm the AP character of the scheme and its Asymptotic Stability

    Fluid Simulations with Localized Boltzmann Upscaling by Direct Simulation Monte-Carlo

    Full text link
    In the present work, we present a novel numerical algorithm to couple the Direct Simulation Monte Carlo method (DSMC) for the solution of the Boltzmann equation with a finite volume like method for the solution of the Euler equations. Recently we presented in [14],[16],[17] different methodologies which permit to solve fluid dynamics problems with localized regions of departure from thermodynamical equilibrium. The methods rely on the introduction of buffer zones which realize a smooth transition between the kinetic and the fluid regions. In this paper we extend the idea of buffer zones and dynamic coupling to the case of the Monte Carlo methods. To facilitate the coupling and avoid the onset of spurious oscillations in the fluid regions which are consequences of the coupling with a stochastic numerical scheme, we use a new technique which permits to reduce the variance of the particle methods [11]. In addition, the use of this method permits to obtain estimations of the breakdowns of the fluid models less affected by fluctuations and consequently to reduce the kinetic regions and optimize the coupling. In the last part of the paper several numerical examples are presented to validate the method and measure its computational performances

    A Multiscale Kinetic-Fluid Solver with Dynamic Localization of Kinetic Effects

    Full text link
    This paper collects the efforts done in our previous works [P. Degond, S. Jin, L. Mieussens, A Smooth Transition Between Kinetic and Hydrodynamic Equations, J. Comp. Phys., 209 (2005) 665--694.],[P.Degond, G. Dimarco, L. Mieussens, A Moving Interface Method for Dynamic Kinetic-fluid Coupling, J. Comp. Phys., Vol. 227, pp. 1176-1208, (2007).],[P. Degond, J.G. Liu, L. Mieussens, Macroscopic Fluid Model with Localized Kinetic Upscaling Effects, SIAM Multi. Model. Sim. 5(3), 940--979 (2006)] to build a robust multiscale kinetic-fluid solver. Our scope is to efficiently solve fluid dynamic problems which present non equilibrium localized regions that can move, merge, appear or disappear in time. The main ingredients of the present work are the followings ones: a fluid model is solved in the whole domain together with a localized kinetic upscaling term that corrects the fluid model wherever it is necessary; this multiscale description of the flow is obtained by using a micro-macro decomposition of the distribution function [P. Degond, J.G. Liu, L. Mieussens, Macroscopic Fluid Model with Localized Kinetic Upscaling Effects, SIAM Multi. Model. Sim. 5(3), 940--979 (2006)]; the dynamic transition between fluid and kinetic descriptions is obtained by using a time and space dependent transition function; to efficiently define the breakdown conditions of fluid models we propose a new criterion based on the distribution function itself. Several numerical examples are presented to validate the method and measure its computational efficiency.Comment: 34 page

    A macroscopic model for a system of swarming agents using curvature control

    Get PDF
    In this paper, we study the macroscopic limit of a new model of collective displacement. The model, called PTWA, is a combination of the Vicsek alignment model and the Persistent Turning Walker (PTW) model of motion by curvature control. The PTW model was designed to fit measured trajectories of individual fish. The PTWA model (Persistent Turning Walker with Alignment) describes the displacements of agents which modify their curvature in order to align with their neighbors. The derivation of its macroscopic limit uses the non-classical notion of generalized collisional invariant. The macroscopic limit of the PTWA model involves two physical quantities, the density and the mean velocity of individuals. It is a system of hyperbolic type but is non-conservative due to a geometric constraint on the velocity. This system has the same form as the macroscopic limit of the Vicsek model (the 'Vicsek hydrodynamics') but for the expression of the model coefficients. The numerical computations show that the numerical values of the coefficients are very close. The 'Vicsek Hydrodynamic model' appears in this way as a more generic macroscopic model of swarming behavior as originally anticipated

    Topological interactions in a Boltzmann-type framework

    Full text link
    We consider a finite number of particles characterised by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of another particle, the leader. The follower chooses its leader according to the proximity rank of the latter with respect to the former. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit equation is akin to the Boltzmann equation. However, it exhibits a spatial non-locality instead of the classical non-locality in velocity space. This result relies on the approximation properties of Bernstein polynomials

    A multi-layer model for self-propelled disks interacting through alignment and volume exclusion

    Get PDF
    We present an individual-based model describing disk-like self-propelled particles moving inside parallel planes. The disk directions of motion follow alignment rules inside each layer. Additionally, the disks are subject to interactions with those of the neighboring layers arising from volume exclusion constraints. These interactions affect the disk inclinations with respect to the plane of motion. We formally de-rive a macroscopic model composed of planar Self-Organized Hydrodynamic (SOH) models describing the transport of mass and evolution of mean direction of motion of the disks in each plane, supplemented with transport equations for the mean disk inclination. These planar models are coupled due to the interactions with the neighboring planes. Numerical comparisons between the individual-based and macroscopic models are carried out. These models could be applicable, for instance, to describe sperm-cell collective dynamics

    On massless electron limit for a multispecies kinetic system with external magnetic field

    Get PDF
    We consider a three-dimensional kinetic model for a two species plasma consisting of electrons and ions confined by an external nonconstant magnetic field. Then we derive a kinetic-fluid model when the mass ratio me/mim_e/m_i tends to zero. Each species initially obeys a Vlasov-type equation and the electrostatic coupling follows from a Poisson equation. In our modeling, ions are assumed non-collisional while a Fokker-Planck collision operator is taken into account in the electron equation. As the mass ratio tends to zero we show convergence to a new system where the macroscopic electron density satisfies an anisotropic drift-diffusion equation. To achieve this task, we overcome some specific technical issues of our model such as the strong effect of the magnetic field on electrons and the lack of regularity at the limit. With methods usually adapted to diffusion limit of collisional kinetic equations and including renormalized solutions, relative entropy dissipation and velocity averages, we establish the rigorous derivation of the limit model
    • …
    corecore