588 research outputs found

    A Measure of Space for Computing over the Reals

    Full text link
    We propose a new complexity measure of space for the BSS model of computation. We define LOGSPACE\_W and PSPACE\_W complexity classes over the reals. We prove that LOGSPACE\_W is included in NC^2\_R and in P\_W, i.e. is small enough for being relevant. We prove that the Real Circuit Decision Problem is P\_R-complete under LOGSPACE\_W reductions, i.e. that LOGSPACE\_W is large enough for containing natural algorithms. We also prove that PSPACE\_W is included in PAR\_R

    A Numerical Algorithm for Zero Counting. I: Complexity and Accuracy

    Get PDF
    We describe an algorithm to count the number of distinct real zeros of a polynomial (square) system f. The algorithm performs O(n D kappa(f)) iterations where n is the number of polynomials (as well as the dimension of the ambient space), D is a bound on the polynomials' degree, and kappa(f) is a condition number for the system. Each iteration uses an exponential number of operations. The algorithm uses finite-precision arithmetic and a polynomial bound for the precision required to ensure the returned output is correct is exhibited. This bound is a major feature of our algorithm since it is in contrast with the exponential precision required by the existing (symbolic) algorithms for counting real zeros. The algorithm parallelizes well in the sense that each iteration can be computed in parallel polynomial time with an exponential number of processors.Comment: We made minor but necessary improvements in the presentatio
    corecore