506 research outputs found
Beta-blocker under-use in COPD patients
Background: Cardiovascular (CVS) comorbidities are common in COPD and contribute significantly to morbidity and mortality, especially following acute exacerbations of COPD (AECOPD). Beta-blockers (BBs) are safe and effective in COPD patients, with demonstrated survival benefit following myocardial infarction. We sought to determine if BBs are under-prescribed in patients hospitalized with AECOPD. We also sought to determine inpatient rates of CVS and cerebrovascular complications, and their impact on patient outcomes.
Methods: Retrospective hospital data was collected over a 12-month period. The medical records of all patients 40 years of age coded with a diagnosis of AECOPD were analyzed. Prevalent use and incident initiation of BBs were assessed. Comorbidities including indications and contraindications for BB use were analyzed.
Results: Of the 366 eligible patients, 156 patients (42.6%) had at least one indication for BB use – of these patients, only 53 (34.0%) were on BB therapy and 61 (39.1%) were not on BB therapy but had no listed contraindication. Prevalent use of BBs at the time of admission in all 366 patients was 19.7%, compared with 45.6%, 39.6% and 45.9% use of anti-platelets, statins and angiotensin-converting enzyme inhibitor/angiotensin II receptor blockers, respectively. CVS and cerebrovascular complications were common in this population (57 patients, 16%) and were associated with longer length of stay (p,0.01) and greater inpatient mortality (p=0.02).
Conclusions: BBs are under-prescribed in COPD patients despite clear indication(s) for their use. Further work is required to explore barriers to BB prescribing in COPD patients
Utjecaj izloženosti 1,6-heksametilen diizocijanatu (HDI) na vršni ekspiratorni protok u autolakirera u Iranu
The aim of this study was to investigate the effects of occupational exposure to 1,6-hexamethylene diisocyanate (HDI) on peak flowmetry in automobile body paint shop workers in Iran. We studied a population of 43 car painters exposed to HDI at their workplaces. Peak expiratory fl ow was tested for one working week, from the start to the end of each shift. Air was sampled and HDI analysed in parallel, according to the OSHA 42 method. Daily and weekly HDI exposure averages were (0.42±0.1) mg m-3 and (0.13±0.05) mg m-3, respectively. On painting days, 72 % of workers showed more than a 10 % variation in peak expiratory fl ow. Inhalation exposure exceeded the threshold limit value (TLV) ten times over. This strongly suggests that HDI affected the peak fl owmetry in the studied workers.Cilj je ovog ispitivanja bio utvrditi vršni protok u 43 iranska autolakirera profesionalno izložena 1,6-heksametilen diizocijanatu (HDI). Vršni ekspiratorni protok testiran je tjedan dana na početku i kraju svake smjene. Uzorkovanje i mjerenje HDI-ja u zraku radilo se istodobno s testiranjem vršnoga protoka, prema metodi OSHA 42.
Prosječna dnevna izloženost radnika HDI-ju iznosila je (0.42±0.1) mg m-3, a tjedna (0.13±0.05) mg m-3. U 72 % radnika vršni ekspiratorni protok tijekom dana varirao je više od 10 %.
Radnici su udisali deset puta više razine HDI-ja od graničnih te je moguće da je HDI utjecao na mjerenja plućne funkcije
An introduction to InP-based generic integration technology
Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets. Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology
An introduction to InP-based generic integration technology
Photonic integrated circuits (PICs) are considered as the way to make photonic systems or
subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets.Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology.Funding is acknowledged by the EU-projects ePIXnet, EuroPIC and PARADIGM and the Dutch projects NRC Photonics, MEMPHIS, IOP Photonic Devices and STW GTIP. Many others have contributed and the authors would like to thank other PARADIGM and EuroPIC partners for their help in discussions, particularly Michael Robertson (CIP).This is the final published version distributed under a Creative Commons Attribution License. It can also be viewed on the publisher's website at: http://iopscience.iop.org/0268-1242/29/8/08300
Genetic variants affecting cross-sectional lung function in adults show little or no effect on longitudinal lung function decline
Background: Genome-wide association studies have identified numerous genetic regions that influence cross-sectional lung function. Longitudinal decline in lung function also includes a heritable component but the genetic determinants have yet to be defined.
Objectives: We aimed to determine whether regions associated with cross-sectional lung function were also associated with longitudinal decline and to seek novel variants which influence decline.
Methods: We analysed genome-wide data from 4167 individuals from the Busselton Health Study cohort, who had undergone spirometry (12 695 observations across eight time points). A mixed model was fitted and weighted risk scores were calculated for the joint effect of 26 known regions on baseline and longitudinal changes in FEV1 and FEV1/FVC. Potential additional regions of interest were identified and followed up in two independent cohorts.
Results: The 26 regions previously associated with cross-sectional lung function jointly showed a strong effect on baseline lung function (p=4.44×10−16 for FEV1/FVC) but no effect on longitudinal decline (p=0.160 for FEV1/FVC). This was replicated in an independent cohort. 39 additional regions of interest (48 variants) were identified; these associations were not replicated in two further cohorts.
Conclusions: Previously identified genetic variants jointly have a strong effect on cross-sectional lung function in adults but little or no effect on the rate of decline of lung function. It is possible that they influence COPD risk through lung development. Although no genetic variants have yet been associated with lung function decline at stringent genome-wide significance, longitudinal change in lung function is heritable suggesting that there is scope for future discoveries
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Stomach cancer and occupational exposure to asbestos: a meta-analysis of occupational cohort studies
BACKGROUND: A recent Monographs Working Group of the International Agency for Research on Cancer concluded that there is limited evidence for a causal association between exposure to asbestos and stomach cancer. METHODS: We performed a meta-analysis to quantitatively evaluate this association. Random effects models were used to summarise the relative risks across studies. Sources of heterogeneity were explored through subgroup analyses and meta-regression. RESULTS: We identified 40 mortality cohort studies from 37 separate papers, and cancer incidence data were extracted for 15 separate cohorts from 14 papers. The overall meta-SMR for stomach cancer for total cohort was 1.15 (95% confidence interval 1.03–1.27), with heterogeneous results across studies. Statistically significant excesses were observed in North America and Australia but not in Europe, and for generic asbestos workers and insulators. Meta-SMRs were larger for cohorts reporting a SMR for lung cancer above 2 and cohort sizes below 1000. CONCLUSIONS: Our results support the conclusion by IARC that exposure to asbestos is associated with a moderate increased risk of stomach cancer
A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
This is the final version of the article. Available from the publisher via the DOI in this record.Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways
Genome-wide association analysis identifies six new loci associated with forced vital capacity
Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease
Projecting the effect of crop yield increases, dietary change and different price scenarios on land use under two different state security regimes
Peer reviewe
- …
