555 research outputs found

    Atomic Zitterbewegung

    Full text link
    Ultra-cold atoms which are subject to ultra-relativistic dynamics are investigated. By using optically induced gauge potentials we show that the dynamics of the atoms is governed by a Dirac type equation. To illustrate this we study the trembling motion of the centre of mass for an effective two level system, historically called Zitterbewegung. Its origin is described in detail, where in particular the role of the finite width of the atomic wave packets is seen to induce a damping of both the centre of mass dynamics and the dynamics of the populations of the two levels.Comment: 6 pages, 4 figure

    Spatially resolved spectroscopy of Coma cluster early-type galaxies - II:the minor axis dataset

    Get PDF
    We present minor axis, off set major axis and one diagonal long slit spectra for 10 E and S0 galaxies of the Coma cluster drawn from a magnitude-limited sample studied before. We derive rotation curves, velocity dispersion profiles and the H-3 and H-4 coefficients of the Hermite decomposition of the line of sight velocity distribution. Moreover, we derive the line index profiles of Mg, Fe and Hbeta line indices and assess their errors. The data will be used to construct dynamical models of the galaxies and study their stellar populations

    Random walks in random Dirichlet environment are transient in dimension d3d\ge 3

    Full text link
    We consider random walks in random Dirichlet environment (RWDE) which is a special type of random walks in random environment where the exit probabilities at each site are i.i.d. Dirichlet random variables. On Zd\Z^d, RWDE are parameterized by a 2d2d-uplet of positive reals. We prove that for all values of the parameters, RWDE are transient in dimension d3d\ge 3. We also prove that the Green function has some finite moments and we characterize the finite moments. Our result is more general and applies for example to finitely generated symmetric transient Cayley graphs. In terms of reinforced random walks it implies that directed edge reinforced random walks are transient for d3d\ge 3.Comment: New version published at PTRF with an analytic proof of lemma

    Time Evolution of the External Field Problem in QED

    Full text link
    We construct the time-evolution for the second quantized Dirac equation subject to a smooth, compactly supported, time dependent electromagnetic potential and identify the degrees of freedom involved. Earlier works on this (e.g. Ruijsenaars) observed the Shale-Stinespring condition and showed that the one-particle time-evolution can be lifted to Fock space if and only if the external field had zero magnetic components. We scrutinize the idea, observed earlier by Fierz and Scharf, that the time-evolution can be implemented between time varying Fock spaces. In order to define these Fock spaces we are led to consider classes of reference vacua and polarizations. We show that this implementation is up to a phase independent of the chosen reference vacuum or polarization and that all induced transition probabilities are well-defined and unique.Comment: 60 pages, 1 figure, revised introduction, summary of results added, typos correcte

    Chiral confinement in quasirelativistic Bose-Einstein condensates

    Full text link
    In the presence of a laser-induced spin-orbit coupling an interacting ultra cold spinor Bose-Einstein condensate may acquire a quasi-relativistic character described by a non-linear Dirac-like equation. We show that as a result of the spin-orbit coupling and the non-linearity the condensate may become self-trapped, resembling the so-called chiral confinement, previously studied in the context of the massive Thirring model. We first consider 1D geometries where the self-confined condensates present an intriguing sinusoidal dependence on the inter-particle interactions. We further show that multi-dimensional chiral-confinement is also possible under appropriate feasible laser arrangements, and discuss the properties of 2D and 3D condensates, which differ significantly from the 1D case.Comment: 4 page

    From Anderson to anomalous localization in cold atomic gases with effective spin-orbit coupling

    Full text link
    We study the dynamics of a one-dimensional spin-orbit coupled Schrodinger particle with two internal components moving in a random potential. We show that this model can be implemented by the interaction of cold atoms with external lasers and additional Zeeman and Stark shifts. By direct numerical simulations a crossover from an exponential Anderson-type localization to an anomalous power-law behavior of the intensity correlation is found when the spin-orbit coupling becomes large. The power-law behavior is connected to a Dyson singularity in the density of states emerging at zero energy when the system approaches the quasi-relativistic limit of the random mass Dirac model. We discuss conditions under which the crossover is observable in an experiment with ultracold atoms and construct explicitly the zero-energy state, thus proving its existence under proper conditions.Comment: 4 pages and 4 figure

    Impression management and retrospective sense-making in corporate annual reports: banks' graphical reporting during the global financial crisis

    Get PDF
    This study investigates two potentially complementary reporting scenarios in annual reports: reactive impression management and retrospective sense-making. It examines stock market performance graphs in European listed banks? annual reports before and during the global financial crisis. Our results indicate that banks reacted to the global financial crisis by omitting stock market performance graphs from the annual report and from its most prominent sections. On the other hand, banks reduced favorable distortions and favorable performance comparisons. No significant evidence of retrospective sense-making is found. Overall, the findings are consistent with impression management incorporating human cognitive biases, with companies preferring misrepresentation by omission over misrepresentation by commission. Under high public scrutiny, banks appear to seek to provide a more favorable view by concealing negative information rather than by favorable distortions or comparisons. The study contributes to the development of impression management theories. It uses a psychological interpretation that incorporates human cognitive biases, rather than adopting a purely economically based perspective

    Relativistic quantum effects of Dirac particles simulated by ultracold atoms

    Full text link
    Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progress in quantum simulation of Dirac equation with tunable parameters by using ultracold neutral atoms trapped in optical lattices or subject to light-induced synthetic gauge fields. The effective theories for the quasiparticles become relativistic under certain conditions in these systems, making them ideal platforms for studying the exotic relativistic effects. We focus on the realization of one, two, and three dimensional Dirac equations as well as the detection of some relativistic effects, including particularly the well-known Zitterbewegung effect and Klein tunneling. The realization of quantum anomalous Hall effects is also briefly discussed.Comment: 22 pages, review article in Frontiers of Physics: Proceedings on Quantum Dynamics of Ultracold Atom

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    corecore