116 research outputs found

    Antifungal activity of some alternative control against mango anthracnose in Senegal

    Get PDF
    Mango production in the South of Senegal is exposed to intensive rainfall from late May to October, with high temperature and moisture levels. These conditions are conducive for the development of anthracnose caused by Colletotrichum gloeosporioides (sensu lato) and leading to an absolute necessity for adequate control measures for good quality mango production. Anthracnose disease causes both pre- and postharvest fruit spots and fruit rot as well as premature fruit drop. The purpose of this study was to test the efficacy of several fungicide alternatives (fertilizers and biological control agents) against mango anthracnose in Senegal comparatively to standard fungicides. Field trials were set up in contrasting climates conditions and involved three orchards in the Northern part of the country with a short rainy season and dry climate over 9 to 10 months a year and three other orchards in the Southern part of Senegal with in a humid tropic environment. No anthracnose was recorded in the orchards in northern Senegal. In the south, in contrast, the disease was actual. Among the treatments tested for the control of anthracnose, Sodium molybdate were found effective after fungicides (azoxystrobin and thiophanate methyl). All the alternative treatments to fungicides provided a statistically significant control to the disease as compared to the contro

    Climate Variability in the Sudano-Guinean Transition Area and Its Impact on Vegetation: The Case of the Lamto Region in Côte D’Ivoire

    Get PDF
    Based on unique 50-year datasets from 1962 to 2011, this study diagnoses the variability of climate at Lamto (6.13°N, 5.02°W) in Côte d’Ivoire. A combined pluviothermal index is used to identify climate regions of West Africa. The interdecadal change of the climate is analyzed along with a discussion on the West African Monsoon (WAM) circulation. The impact of vegetation is also analyzed. It is shown that Lamto has mainly a subhumid climate but, in some particular years, this area has a humid climate. Two decades (1962–1971 and 2002–2011) exhibit rainfall excess and the last three ones (1972–1981, 1982–1991, and 1992–2001) show a rainfall deficit that affected West Africa in the early 1970s. The meridional wind field from 1000 hPa to 700 hPa is used to study the WAM variability. The level of the WAM is the lowest (~860–890 hPa) during the active period of the northern wind coming from the Sahara desert (November–February). During 1962–1971 and 2007–2009, the depth of the monsoon at Lamto reaches 300 hPa with an increase in the rainfall. A relationship between potential evapotranspiration and the climate highlights rainfall deficit in 1969 and rainfall excess in 2001–2011

    Physiological and genetic control of transpiration efficiency in African rice, Oryza glaberrima Steud

    Get PDF
    Improving crop water use efficiency, the amount of carbon assimilated as biomass per unit of water used by a plant, is of major importance as water for agriculture becomes scarcer. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand remain unknown. These traits were measured in 2019 in a panel of 147 African rice (Oryza glaberrima) genotypes known to be potential sources of tolerance genes to biotic and abiotic stresses. Our results reveal that higher transpiration efficiency is associated with transpiration restriction in African rice. Detailed measurements in a subset of highly contrasted genotypes in terms of biomass accumulation and transpiration confirmed these associations and suggested that root to shoot ratio played an important role in transpiration restriction. Genome wide association studies identified marker-trait associations for transpiration response to evaporative demand, transpiration efficiency, and its residuals, with links to genes involved in water transport and cell wall patterning. Our data suggest that root-shoot partitioning is an important component of transpiration restriction that has a positive effect on transpiration efficiency in African rice. Both traits are heritable and define targets for breeding rice with improved water use strategies.This work was supported by the Institut de Recherche pour le Développement, the CGIAR Research Program (CRP) on rice-agrifood systems (RICE, 2017-2022) and the Agence Nationale de la Recherche (grant ANR-17-MPGA-0011 to VV). Financial support by the Access to Research Infrastructures activity in the Horizon 2020 Programme of the EU (EPPN2020 Grant Agreement 731013) is gratefully acknowledged. PA was supported by a doctoral fellowship from the French Ministry of Higher Education. BEE was supported by the Centre National de la Recherche Scientifique et Technologique of Gabon. The authors acknowledge the IRD iTrop HPC (South Green Platform) at IRD Montpellier for providing HPC resources (https://bioinfo.ird.fr, http://www.southgreen.fr)

    An introduction to the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: rationale and roadmap

    Get PDF
    A multi-platform field measurement campaign involving aircraft and balloons took place over West Africa between 26 July and 25 August 2006, in the frame of the concomitant AMMA Special Observing Period and SCOUT-O3 African tropical activities. Specifically aiming at sampling the upper troposphere and lower stratosphere, the high-altitude research aircraft M55 Geophysica was deployed in Ouagadougou (12.3° N, 1.7° W), Burkina Faso, in conjunction with the German D-20 Falcon, while a series of stratospheric balloon and sonde flights were conducted from Niamey (13.5° N, 2.0° E), Niger. The stratospheric aircraft and balloon flights intended to gather experimental evidence for a better understanding of large scale transport, assessing the effect of lightning on NOx production, and studying the impact of intense mesoscale convective systems on water, aerosol, dust and chemical species in the upper troposphere and lower stratosphere. The M55 Geophysica carried out five local and four transfer flights between southern Europe and the Sahel and back, while eight stratospheric balloons and twenty-nine sondes were flown from Niamey. These experiments allowed a characterization of the tropopause and lower stratosphere of the region. We provide here an overview of the campaign activities together with a description of the general meteorological situation during the flights and a summary of the observations accomplished

    The native shrub, Piliostigma reticulatum , as an ecological “resource island” for mango trees in the Sahel

    Full text link
    African farmers are increasingly adopting sustainable agricultural practices including use of native shrub intercropping approaches. In one village of Sénégal (near Thiès) it was reported that farmers planted mango (Mangifera indica) seedlings within the canopies of a native shrub (Piliostigma reticulatum). Anecdotal information and qualitative observations suggested that the presence of P. reticulatum promoted soil quality and a competitive advantage for establishing mango plantations. We hypothesized that soil chemical and microbial properties of mango rhizosphere soil growing in the presence of P. reticulatum would be significantly improved over soils associated with mango growing outside the influence of P. reticulatum. The results showed that mango-shrub interplanting significantly lowered pH, and increased arbuscular mycorrhizal fungi (AMF) colonization of mango roots, enzyme activities, and microbial biomass compared to mango alone. Phylogenetic analyses by PCR-denaturing gradient gel electrophoresis (DGGE) showed that community structures of fungi, bacteria, and bacterial genes responsible for denitrification (nirK) of the soil from the rooting zone of the mango-shrub intercropping system were distinct from all other soil outside the influence of P. reticulatum. It is concluded that P. reticulatum enhances soil biological functioning and that there is a synergistic effect of intercropping mango with the native shrub, P. reticulatum, in soil quality with a more diverse community, greater AMF infection rates, and greater potential to perform decomposition and mineralize nutrients

    West African Monsoon water cycle: 1. A hybrid water budget data set

    No full text
    International audienceThis study investigates the West African Monsoon water cycle with the help of a new hybrid water budget data set developed within the framework of the African Monsoon Multidisciplinary Analyses. Surface water and energy fluxes are estimated from an ensemble of land surface model simulations forced with elaborate precipitation and radiation products derived from satellite observations, while precipitable water tendencies are estimated from numerical weather prediction analyses. Vertically integrated atmospheric moisture flux convergence is estimated as a residual. This approach provides an advanced, comprehensive atmospheric water budget, including evapotranspiration, rainfall, and atmospheric moisture flux convergence, together with other surface fluxes such as runoff and net radiation. The annual mean and the seasonal cycle of the atmospheric water budget are presented and the couplings between budget terms are discussed for three climatologically distinct latitudinal bands between 6°N and 20°N. West Africa is shown to be alternatively a net source and sink region of atmospheric moisture, depending on the season (a source during the dry season and a sink during the wet season). Several limiting and controlling factors of the regional water cycle are highlighted, suggesting strong sensitivity to atmospheric dynamics and surface radiation. Some insight is also given into the underlying smaller-scale processes. The relationship between evapotranspiration and precipitation is shown to be very different between the Sahel and the regions more to the south and partly controlled by net surface radiation. Strong correlations are found between precipitation and moisture flux convergence over the whole region from daily to interannual time scales. Causality is also established between monthly mean anomalies. Hence, precipitation anomalies are preceded by moisture flux convergence anomalies and followed by moisture flux divergence and evapotranspiration anomalies. The results are discussed in comparison to other studies

    Overexpression of a Common Wheat Gene TaSnRK2.8 Enhances Tolerance to Drought, Salt and Low Temperature in Arabidopsis

    Get PDF
    Drought, salinity and low temperatures are major factors limiting crop productivity and quality. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in abiotic stress signaling in plants. In this study, TaSnRK2.8, a SnRK2 member in wheat, was cloned and its functions under multi-stress conditions were characterized. Subcellular localization showed the presence of TaSnRK2.8 in the cell membrane, cytoplasm and nucleus. Expression pattern analyses in wheat revealed that TaSnRK2.8 was involved in response to PEG, NaCl and cold stresses, and possibly participates in ABA-dependent signal transduction pathways. To investigate its role under various environmental stresses, TaSnRK2.8 was transferred to Arabidopsis under control of the CaMV-35S promoter. Overexpression of TaSnRK2.8 resulted in enhanced tolerance to drought, salt and cold stresses, further confirmed by longer primary roots and various physiological characteristics, including higher relative water content, strengthened cell membrane stability, significantly lower osmotic potential, more chlorophyll content, and enhanced PSII activity. Meanwhile, TaSnRK2.8 plants had significantly lower total soluble sugar levels under normal growing conditions, suggesting that TaSnRK2.8 might be involved in carbohydrate metabolism. Moreover, the transcript levels of ABA biosynthesis (ABA1, ABA2), ABA signaling (ABI3, ABI4, ABI5), stress-responsive genes, including two ABA-dependent genes (RD20A, RD29B) and three ABA-independent genes (CBF1, CBF2, CBF3), were generally higher in TaSnRK2.8 plants than in WT/GFP controls under normal/stress conditions. Our results suggest that TaSnRK2.8 may act as a regulatory factor involved in a multiple stress response pathways
    corecore