1,714 research outputs found

    Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review

    Get PDF
    Producción CientíficaSeveral analytical approaches have been developed for the determination of emerging pollutants (EPs), including pharmaceuticals and personal care products (PPCPs) in environmental matrices. This paper reviews the sample preparation and instrumental methods proposed in the last few years (2012e2018) to assess PPCPs in sewage sludge. Three main steps are examined: extraction, clean-up and analysis. Sample preparation is critical as target compounds are normally found at low concentrations in complex matrices. Most procedures include sewage sludge pretreatment mostly through ultrasound-assisted extraction (UAE) although other novel techniques such as QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) or MSPD (matrix solid-phase dispersion) have been also employed. In one report, no differences in extraction efficiency were detected among the most commonly used extraction techniques such as ultrasound, microwave and pressurized liquid. Clean-up usually involves a conventional method such as solid phase extraction (SPE). This step is needed to appreciably reduce matrix suppression, and is followed by an instrumental analysis using techniques of preference such as gas chromatography (GC) or liquid chromatography (LC), mostly coupled to mass spectrometry (MS). A fully automated on-line system that includes extraction, chromatographic separation, and mass spectrometry in one-stage is here presented as a novel way of determining PPCPs in sewage sludge. This review also discusses the advantages and limitations of the different techniques used. Miniaturizing analytical techniques use of novel solid and liquid phase materials are emerging as efficient options that fulfill the principles of so-called "green chemistry".This study was supported by the Spanish Government (MINECO-CTM2015-70722-R) as well as by the Regional Government of Castilla y Le on and European Union through the FEDER Funding Program (CLU 2017e09, UIC 071 and Red Novedar). Nereida P erez-Lemus and Rebeca L opez-Serna acknowledge the Spanish Ministry of Science, Innovation and Universities for research grants (predoctoral CTM2015-70722-R and Juan de la Cierva Incorporaci on JCI-2015-23304, respectively)

    Analysis of 60 pharmaceuticals and personal care products in sewage sludge by ultra-high performance liquid chromatography and tandem mass spectroscopy

    Get PDF
    Producción CientíficaThis paper presents a comparison of three different analytical proposals for the determination of 60 pharmaceuticals and personal care products (PPCPs) in solid urban sewage sludge. Two fast sample pretreatments, i.e., online solid-phase-extraction (online SPE) and direct injection (DI), were tested against the conventional offline solid phase extraction (offline SPE). In all cases, subsequently, extracts underwent ultra-high-performance-liquid chromatography coupled to tandem-mass-spectrometry (UHPLC-MS/MS), simultaneously operating in both positive and negative electrospray ionization (ESI) mode. In addition, as solid matrices, clean-up steps were necessarily preceded by ultra-sound-assisted extraction (UAE) in all cases. Matrix-matched quantification was combined with internal standard providing high reliability to all three approaches. Best performance was observed for the fully automatized and non-pretreated DI method, showing limits of detection below 30 ng g-1 for many of the target compounds, and recoveries between 80 and 120%. Finally, the best working method was validated and applied to the analysis of PPCPs in different dewatered digested sludge samples from the wastewater treatment plant (WWTP) in Valladolid (Spain). Acetaminophen was found at concentrations above 1,000 ng g-1.This work was supported by the University of Valladolid (UVa) through its General Foundation (063/136391), by the Spanish Government (MINECO-CTM2015-70722-R) and by the Regional Government of Castilla y León and the EU-FEDER (CLU 2017–09, UIC 071, INFRARED2018-UVA3, and VA080G18). It was partially carried out in the Laboratory of Instrumental Techniques from the UVa. The UVa is also recognized for the postdoctoral contract held by Rebeca López Serna (2018POSTDOC UVA12)

    Separate digestion of liquid and solid fractions of thermally pretreated secondary sludge. Assessment and global evaluation

    Get PDF
    Producción CientíficaThe fractioning into separate liquid and solid fractions obtained by centrifugation of thickened fresh and thermally pretreated (170 ºC, 50 minutes) secondary sludge showed that 30% of the particulate organic matter was released during the pretreatment, correspondingly increasing the methane production of the particulate matter by 30% (from 259 to 329 mL CH4/g VSfed). The responsible of this enhancement was the liquid fraction, as the biodegradability of the solid fraction remained constant after the pretreatment. Mass balances showed that 34% of the VS were released to the liquid fraction, generating nearly 50% of the total methane produced, with much faster kinetics compared to the solid fraction. These results support the hypothesis of a separate liquid-solid digestion of thermally pretreated sludge, which would result in decreasing the digestion volume to half while duplicating the methane productivity per kilogram of sludge fed to digestion

    Evaluation of the Steam Explosion Pretreatment Upon the Anaerobic Digestion of Water Hyacinth Biomass: Influence on Liquid and Solid Fractions

    Get PDF
    Biochemical methane potential tests were performed to evaluate the effects of steam explosion on the liquid and solid substrates of thermal hydrolysis pretreatment applied to water hyacinth biomass. The operational conditions of the thermal hydrolysis applied the combination of two temperatures (170 and 210 ºC) and two cooking times (5 and 30 min). The higher solubilization factor was 22.9% for the sample pretreated at 210 ºC and 30 min followed by steam explosion effect (TH + SE). Steam explosion, temperature and time were, in order of importance, the more effective operational conditions for the biomass solubilization. The sample 210 ºC - 5 min TH + SE presented the higher methane production increase, in relation to the raw substrate, resulting in a increment factor of 2.43, for the solid sample. The higher methane production increase for the liquid sample was on a factor of 1.67, for sample 210 ºC - 30 min TH + SE. The higher biomethanization increase considering both biomass factors (solid + liquid) was obtained for the pretreatment 170 ºC - 30 min TH + SE. A combined model confirmed the hydrolysis limitation for the solid samples biodegradation; however, it was not clear for the prediction on the liquid samples. Micrographs evidenced the morphological changes of the solid substrate with the solubilization increase. Particle size reduction was the most effective effect of the pretreatment on the substrate morphology. Porosity increment was observed only in the surface of the sample 210 ºC - 30 min TH + SE

    Optimization of a Thermal Hydrolysis process for sludge pre-treatment

    Get PDF
    Producción CientíficaAt industrial scale, thermal hydrolysis is the most used process to enhance biodegradability of the sludge produced in wastewater treatment plants. Through statistically guided Box-Behnken experimental design, the present study analyses the effect of TH as pre-treatment applied to activated sludge. The selected process variables were temperature (130-180ºC), time (5-50 minutes) and decompression mode (slow or steam-explosion effect), and the parameters evaluated were sludge solubilisation and methane production by anaerobic digestion. A quadratic polynomial model was generated to compare the process performance for the 15 different combinations of operation conditions by modifying the process variables evaluated. The statistical analysis performed exhibited that methane production and solubility were significantly affected by pre-treatment time and temperature. During high intensity pre-treatment (high temperature and long times), the solubility increased sharply while the methane production exhibited the opposite behaviour, indicating the formation of some soluble but non-biodegradable materials. Therefore, solubilisation is not a reliable parameter to quantify the efficiency of a thermal hydrolysis pre-treatment, since it is not directly related to methane production. Based on the operational parameters optimization, the estimated optimal thermal hydrolysis conditions to enhance of sewage sludge digestion were: 140-170°C heating temperature, 5-35min residence time, and one sudden decompression

    Hydrothermal multivariable approach: Full-scale feasibility study

    Get PDF
    Producción CientíficaA process configuration combining thermal hydrolysis (TH) and anaerobic digestion (AD) of sludge has been studied with the objective of analysing the feasibility of the technology for full scale installations. The study has been performed through pilot scale experiments and energy integration considerations, and a scheme of the most profitable option is presented: thermal hydrolysis unit fed with 7% total solids (TS) secondary sludge, anaerobic digestion of the hydrolysed sludge together with fresh primary sludge, and a cogeneration unit to produce green electricity and provide hot steam for the thermal hydrolysis process. From a technical and practical point of view, the process scheme proposed is considered to be feasible. Based on the results of the pilot plant performance and the laboratory studies, the process has proven to operate successfully at a concentration of 7-8% TS. After the thermal hydrolysis, sludge viscosity becomes radically smaller, and this favours the digesters mixing and performance (40% more biogas can be obtained in nearly half the residence time compared to the conventional digestion). From an economic point of view, the key factors in the energy balance are: the recovery of heat from hot streams, and the concentration of sludge. The article presents the main energy integration schemes and defines the most profitable one: an energetically self-sufficient process, with a cogeneration unit. The scheme proposed has proven to need no additional energy input for the sludge hydrolysis, generates more that 1 MW green electricity (246 kW surplus with respect to the conventional process), and produces 58% less volume of Class A biowaste. The study and balances here presented set the basis for the scale-up to a demonstration plant (hydrolysis + anaerobic digestion + cogeneration unit

    Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications

    Full text link
    Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425 and PI19/00321), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), European Regional Development Fund (FEDER), the Organización Nacional de Ciegos Españoles (ONCE), Fundación Ramón Areces, Fundación Conchita Rábago and the University Chair UAM-IIS-FJD of Genomic Medicine. Irene Perea-Romero is supported by a PhD fellowship from the predoctoral Program from ISCIII (FI17/00192). Ionut F. Iancu is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017-AI/BMD7256). Marta del Pozo-Valero is supported by a PhD grant from the Fundación Conchita Rábago. Berta Almoguera is supported by a Juan Rodes program from ISCIII (JR17/00020). Pablo Minguez is supported by a Miguel Servet program from ISCIII (CP16/00116). Marta Corton is supported by a Miguel Servet program from ISCIII (CPII17/00006). The funders played no role in study design, data collection, data analysis, manuscript preparation and/or publication decisions

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore