167 research outputs found
Anti-tumor effects of anti-Semaphorin 4D antibody unravel a novel pro-invasive mechanism of vascular targeting agents
One of the main consequences of inhibition of neovessel growth and vessel pruning produced by angiogenesis inhibitors is increased intratumor hypoxia. Growing evidence indicates that tumor cells escape from this hypoxic environment to better nourished locations, presenting hypoxia as a positive stimulus for invasion. In particular, anti-VEGF/R therapies produce hypoxia-induced invasion and metastasis in a spontaneous mouse model of pancreatic neuroendocrine cancer (PanNET), RIP1-Tag2. Here, a novel vascular-targeting agent targeting semaphorin 4D (Sema4D) demonstrated impaired tumor growth and extended survival in the RIP1-Tag2 model. Surprisingly, although there was no induction of intratumor hypoxia by anti-Sema4D therapy, the increase in local invasion and distant metastases was comparable with the one produced by VEGFR inhibition. Mechanistically, the antitumor effect was due to an alteration in vascular function by modification of pericyte coverage involving platelet-derived growth factor B. On the other hand, the aggressive phenotype involved a macrophage-derived Sema4D signaling engagement, which induced their recruitment to the tumor invasive fronts and secretion of stromal cellâderived factor 1 (SDF1) that triggered tumor cell invasive behavior via CXCR4. A comprehensive clinical validation of the targets in different stages of PanNETs demonstrated the implication of both Sema4D and CXCR4 in tumor progression. Taken together, we demonstrate beneficial antitumor and prosurvival effects of anti-Sema4D antibody but also unravel a novel mechanism of tumor aggressivity. This mechanism implicates recruitment of Sema4D-positive macrophages to invasive fronts and their secretion of proinvasive molecules that ultimately induce local tumor invasion and distant metastasis in PanNETs.This work is supported by research grants from ERC (ERC-StG-281830) EU-FP7, MinECO (SAF2016-79347-R), ISCIII Spain (AES, DTS17/00194) and AGAUR-Generalitat de Catalunya (2017SGR771). Some of these include European Development Regional Funds (ERDF âa way to achieve Europeâ). Vaccinex Inc. provided reagents and research money (<20.000 Eur) to support this work
Molecular pathogenesis and targeted therapy of sporadic pancreatic neuroendocrine tumors
Over the past few years, knowledge regarding the molecular pathology of sporadic pancreatic neuroendocrine tumors (PNETs) has increased substantially, and a number of targeted agents have been tested in clinical trials in this tumor type. For some of these agents there is a strong biological rationale. Among them, the mammalian target of rapamycin inhibitor Everolimus and the antiangiogenic agent Sunitinib have both been approved for the treatment of PNETs. However, there is lack of knowledge regarding biomarkers able to predict their efficacy, and mechanisms of resistance. Other angiogenesis inhibitors, such as Pazopanib, inhibitors of Src, Hedgehog or of PI3K might all be useful in association or sequence with approved agents. On the other hand, the clinical significance, and potential for treatment of the most common mutations occurring in sporadic PNETs, in the MEN-1 gene and in ATRX and DAXX, remains uncertain. The present paper reviews the main molecular changes occurring in PNETs and how they might be linked with treatment options
Novel 1,4-benzoxazine and 1,4-benzodioxine inhibitors of angiogenesis.
Esters of 1,4-benzoxazine and 1,4-benzodioxine compounds 1 and 10, which combine thrombin inhibitory and GPIIb/IIIa antagonistic activity in one molecule are shown to inhibit endothelial cell migration and tube formation in vitro and angiogenesis in the chicken chorioallantoic membrane (CAM) assay. The corresponding carboxylic acids 1 (R2 = H) and 11 were devoid of antiangiogenic activity, most probably due to their insufficient entry into the cell. Although thrombin inhibition remains the most probable explanation for their inhibition of angiogenesis, VEGFR2 kinase assay suggest that other targets such as VEGFR2 might be involved
Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity.
Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence-associated lysosomal ÎČ-galactosidase (SA-ÎČ-gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose-encapsulated nanoparticles within these cells. Here, we show that galacto-conjugation of the BCL-2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav-Gal), that can be preferentially activated by SA-ÎČ-gal activity in a wide range of cell types. Nav-Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav-Gal enhances the cytotoxicity of standard senescence-inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav-Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto-conjugation reduces Navitoclax-induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities
Proteomics-based analysis of invasion-related proteins in malignant gliomas
One of the insidious biological features of gliomas is their potential to extensively invade normal brain tissue, yet molecular mechanisms that dictate this locally invasive behavior remain poorly understood. To investigate the molecular basis of invasion by malignant gliomas, proteomic analysis was performed using a pair of canine glioma subclones - J3T-1 and J3T-2 - that show different invasion phenotypes in rat brains but have similar genetic backgrounds. Two-dimensional protein electrophoresis of whole-cell lysates of J3T-1 (angiogenesis-dependent invasion phenotype) and J3T-2 (angiogenesis-independent invasion phenotype) was performed. Twenty-two distinct spots were recognized when significant alteration was defined as more than 1.5-fold change in spot intensity between J3T-1 and J3T-2. Four proteins that demonstrated increased expression in J3T-1, and 14 proteins that demonstrated increased expression in J3T-2 were identified using liquid chromatography-mass spectrometry analysis. One of the proteins identified was annexin A2, which was expressed at higher levels in J3T-1 than in J3T-2. The higher expression of annexin A2 in J3T-1 was corroborated by quantitative RT-PCR of the cultured cells and immunohistochemical staining of the rat brain tumors. Moreover, immunohistochemical analysis of human glioblastoma specimens showed that annexin A2 was expressed at high levels in the tumor cells that formed clusters around dilated vessels. These results reveal differences in the proteomic profiles between these two cell lines that might correlate with their different invasion profiles. Thus, annexin A2 may be related to angiogenesis-dependent invasion
Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis
Members of the transforming growth factor ÎČ (TGF-ÎČ) family have been genetically linked to vascular formation during embryogenesis. However, contradictory studies about the role of TGF-ÎČ and other family members with reported vascular functions, such as bone morphogenetic protein (BMP) 9, in physiological and pathological angiogenesis make the need for mechanistic studies apparent. We demonstrate, by genetic and pharmacological means, that the TGF-ÎČ and BMP9 receptor activin receptor-like kinase (ALK) 1 represents a new therapeutic target for tumor angiogenesis. Diminution of ALK1 gene dosage or systemic treatment with the ALK1-Fc fusion protein RAP-041 retarded tumor growth and progression by inhibition of angiogenesis in a transgenic mouse model of multistep tumorigenesis. Furthermore, RAP-041 significantly impaired the in vitro and in vivo angiogenic response toward vascular endothelial growth factor A and basic fibroblast growth factor. In seeking the mechanism for the observed effects, we uncovered an unexpected signaling synergy between TGF-ÎČ and BMP9, through which the combined action of the two factors augmented the endothelial cell response to angiogenic stimuli. We delineate a decisive role for signaling by TGF-ÎČ family members in tumor angiogenesis and offer mechanistic insight for the forthcoming clinical development of drugs blocking ALK1 in oncology
Antibody Targeting of Cathepsin S Inhibits Angiogenesis and Synergistically Enhances Anti-VEGF
Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development. where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis
Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2009
The 11th St Gallen (Switzerland) expert consensus meeting on the primary treatment of early breast cancer in March 2009 maintained an emphasis on targeting adjuvant systemic therapies according to subgroups defined by predictive markers. Any positive level of estrogen receptor (ER) expression is considered sufficient to justify the use of endocrine adjuvant therapy in almost all patients. Overexpression or amplification of HER2 by standard criteria is an indication for anti-HER2 therapy for all but the very lowest risk invasive tumours. The corollary is that ER and HER2 must be reliably and accurately measured. Indications for cytotoxic adjuvant therapy were refined, acknowledging the role of risk factors with the caveat that risk per se is not a target. Proliferation markers, including those identified in multigene array analyses, were recognised as important in this regard. The threshold for indication of each systemic treatment modality thus depends on different criteria which have been separately listed to clarify the therapeutic decision-making algorithm
A novel antiangiogenic and vascular normalization therapy targeted against human CD160 receptor
A monoclonal anti-CD160 antibody inhibits the growth of new vessels in pathological ocular and tumor neoangiogenesis but not in healthy tissues
- âŠ