138 research outputs found

    Potential Arctic connections to eastern North American cold winters

    Get PDF
    Far-field temperature and geopotential height fields associated with eastern North American early winter (DEC-JAN) extreme cold events are documented since 1950. Based on 19 cases of monthly extreme cold events, two large-scale patterns emerge. First, a strong Alaskan Ridge (AR) can develop with higher 700 hPa geopotential heights and positive temperature anomalies from Alaska south along the coastal northeastern Pacific Ocean, and low eastern North American geopotential height anomalies, the well-known North American ridge/trough pattern. A second subset of cases is a Greenland-Baffin Blocking (GBB) pattern that have positive temperature anomalies centered west of Greenland with a cut off tropospheric polar vortex feature over eastern North America; cold temperature anomalies extend from southeastern United States northwestward into central Canada. Both of these historical large-scale patterns associated with eastern North American cold events (AR and GBB) have the potential for future reinforcement by sea ice loss and associated warm Arctic regional temperature anomalies. An example of a GBB case is 15-22 December 2010 and an extreme AR case is in early 4-14 December 2016. In both cases lack of sea ice and warm temperature anomalies were colocated with local maximums in the geopotential height anomaly fields. Future regional delay of fall freeze up in the Chukchi Sea and Baffin Bay regions could reinforce these geopotential height patterns once they occur, but is not likely to initiate AR and GBB type events

    Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    Get PDF
    第3回極域科学シンポジウム/第35回極域気水圏シンポジウム 11月30日(金) 国立国語研究所 2階多目的

    Interpretation of North Pacific Variability as a Short- and Long-Memory Process*

    Get PDF
    A major difficulty in investigating the nature of interdecadal variability of climatic time series is their shortness. An approach to this problem is through comparison of models. In this paper we contrast a first order autoregressive (AR(1)) model with a fractionally differenced (FD) model as applied to the winter averaged sea level pressure time series for the Aleutian low (the North Pacific (NP) index), and the Sitka winter air temperature record. Both models fit the same number of parameters. The AR(1) model is a ‘short memory ’ model in that it has a rapidly decaying autocovariance sequence, whereas an FD model exhibits ‘long memory ’ because its autocovariance sequence decays more slowly. Statistical tests cannot distinguish the superiority of one model over the other when fit with 100 NP or 146 Sitka data points. The FD model does equally well for short term prediction and has potentially important implications for long term behavior. In particular, the zero crossings of the FD model tend to be further apart, so they have more of a ‘regime’-like character; a quarter century interval between zero crossings is four times more likely with the FD than the AR(1) model. The long memory parameter δ for the FD model can be used as a characterization of regime-like behavior. The estimated δs for the NP index (spanning 100 years) and the Sitka time series (168 years) are virtually identical, and their size implies moderate long memory behavior. Although the NP index and the Sitka series have broadband low frequency variability and modest long memory behavior, temporal irregularities in their zero crossings are still prevalent. Comparison of the FD and AR(1) models indicates that regime-like behavior cannot be ruled out for North Pacific processes. 2 1

    Anomalous blocking over Greenland preceded the 2013 extreme early melt of local sea ice

    Get PDF
    The Arctic marine environment is undergoing a transition from thick multi-year to first-year sea ice cover with coincident lengthening of the melt season. Such changes are evident in the Baffin Bay-Davis Strait-Labrador Sea (BDL) region where melt onset has occurred ~8 days decade-1 earlier from 1979-2015. A series of anomalously early events has occurred since the mid-1990s, overlapping a period of increased upper-air ridging across Greenland and the northwestern North Atlantic. We investigate an extreme early melt event observed in spring 2013 below the 1981-2010 melt climatology), with respect to preceding sub-seasonal mid-tropospheric circulation conditions as described by a daily Greenland Blocking Index (GBI). The 40-days prior to the 2013 BDL melt onset are characterized by a persistent, strong 500 hPa anticyclone over the region (GBI >+1 on >75% of days). This circulation pattern advected warm air from northeastern Canada and the northwestern Atlantic poleward onto the thin, first-year sea ice and caused melt about 50 days earlier than normal. The episodic increase in the ridging atmospheric pattern near western Greenland as in 2013, exemplified by large positive GBI values, is an important recent process impacting the atmospheric circulation over a North Atlantic cryosphere undergoing accelerated regional climate change

    Assessing Change-Points in Surface Air Temperature Over Alaska

    Get PDF
    An understanding of low frequency climatic variations is important for climatologists and planning by the public for informed climate mitigation and adaptation. This study applies recent advances in statistical change-point methodology to the variability of temperatures from seven stations in Alaska and the Pacific Decadal Oscillation (PDO) climate index for the past decades. We allow for the presence of multiple change-points in any given data series and provide confidence intervals for the identified change-points. We analyze the multiple station data based on season and temperature means and extremes. Physical processes responsible for specific identified temperature changes have been explored through geopotential height field and sea level pressure (SLP) maps. Predominantly, temperature and PDO shifts were observed during winter and spring in the 1940s and the 1970s. The study also identifies anomalous changes in summer that have occurred either in 1960s or in the 1980s. This is a significant deviation from the changes found in the 1970s for winter and spring. Except for a change in the 1940s at King Salmon Airport (KSA) and one in the 1970s at Homer Airport (HA), no other changes were found in fall. Also, there is lack of clear low frequency cyclic variability in the northern North Pacific region. Due to strong interactions and feedbacks, Alaskan sea surface temperature changes identified in this study can have lasting impact upon a number of factors including sea ice, arctic snow cover, atmospheric heat transport, clouds, and others

    Results of the first Arctic Heat Open Science Experiment

    Get PDF
    Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99 (2018): 513-520, doi:10.1175/BAMS-D-16-0323.1.Seasonally ice-covered marginal seas are among the most difficult regions in the Arctic to study. Physical constraints imposed by the variable presence of sea ice in all stages of growth and melt make the upper water column and air–sea ice interface especially challenging to observe. At the same time, the flow of solar energy through Alaska’s marginal seas is one of the most important regulators of their weather and climate, sea ice cover, and ecosystems. The deficiency of observing systems in these areas hampers forecast services in the region and is a major contributor to large uncertainties in modeling and related climate projections. The Arctic Heat Open Science Experiment strives to fill this observation gap with an array of innovative autonomous floats and other near-real-time weather and ocean sensing systems. These capabilities allow continuous monitoring of the seasonally evolving state of the Chukchi Sea, including its heat content. Data collected by this project are distributed in near–real time on project websites and on the Global Telecommunications System (GTS), with the objectives of (i) providing timely delivery of observations for use in weather and sea ice forecasts, for model, and for reanalysis applications and (ii) supporting ongoing research activities across disciplines. This research supports improved forecast services that protect and enhance the safety and economic viability of maritime and coastal community activities in Alaska. Data are free and open to all (see www.pmel.noaa.gov/arctic-heat/).This work was supported by NOAA Ocean and Atmospheric Research and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063 and by the Innovative Technology for Arctic Exploration (ITAE) program at JISAO/PMEL. Jayne, Robbins, and Ekholm were supported by ONR (N00014-12-10110)

    The recent shift in early summer Arctic atmospheric circulation

    Get PDF
    1 The last six years (2007-2012) show a persistent change in early summer Arctic wind patterns relative to previous decades. The persistent pattern, which has been previously recognized as the Arctic Dipole (AD), is characterized by relatively low sea-level pressure over the Siberian Arctic with high pressure over the Beaufort Sea, extending across northern North America and over Greenland. Pressure differences peak in June. In a search for a proximate cause for the newly persistent AD pattern, we note that the composite 700 hPa geopotential height field during June 2007-2012 exhibits a positive anomaly only on the North American side of the Arctic, thus creating the enhanced mean meridional flow across the Arctic. Coupled impacts of the new persistent pattern are increased sea ice loss in summer, long-lived positive temperature anomalies and ice sheet loss in west Greenland, and a possible increase in Arctic-subarctic weather linkages through higheramplitude upper-level flow. The North American location of increased 700 hPa positive anomalies suggests that a regional atmospheric blocking mechanism is responsible for the presence of the AD pattern, consistent with observations of unprecedented high pressure anomalies over Greenland since 2007. ©2012. American Geophysical Union. All Rights Reserved

    The urgency of Arctic change

    Get PDF
    This article provides a synthesis of the latest observational trends and projections for the future of the Arctic. First, the Arctic is already changing rapidly as a result of climate change. Contemporary warm Arctic temperatures and large sea ice deficits (75% volume loss) demonstrate climate states outside of previous experience. Modeled changes of the Arctic cryosphere demonstrate that even limiting global temperature increases to near 2 °C will leave the Arctic a much different environment by mid-century with less snow and sea ice, melted permafrost, altered ecosystems, and a projected annual mean Arctic temperature increase of +4 °C. Second, even under ambitious emission reduction scenarios, high-latitude land ice melt, including Greenland, are foreseen to continue due to internal lags, leading to accelerating global sea level rise throughout the century. Third, future Arctic changes may in turn impact lower latitudes through tundra greenhouse gas release and shifts in ocean and atmospheric circulation. Arctic-specific radiative and heat storage feedbacks may become an obstacle to achieving a stabilized global climate. In light of these trends, the precautionary principle calls for early adaptation and mitigation actions

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordThe decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.J.A.S. and R.B. were funded by the Natural Environment Research Council (NE/P006760/1). C.D. acknowledges the National Science Foundation (NSF), which sponsors the National Center for Atmospheric Research. D.M.S. was supported by the Met Office Hadley Centre Climate Programme (GA01101) and the APPLICATE project, which is funded by the European Union’s Horizon 2020 programme. X.Z. was supported by the NSF (ARC#1023592). P.J.K. and K.E.M. were supported by the Canadian Sea Ice and Snow Evolution Network, which is funded by the Natural Science and Engineering Research Council of Canada. T.O. was funded by Environment and Climate Change Canada (GCXE17S038). L.S. was supported by the National Oceanic and Atmospheric Administration’s Climate Program Office
    corecore