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Abstract

A major difficulty in investigating the nature of interdecadal variability of climatic

time series is their shortness. An approach to this problem is through comparison of

models. In this paper we contrast a first order autoregressive (AR(1)) model with a

fractionally differenced (FD) model as applied to the winter averaged sea level pressure

time series for the Aleutian low (the North Pacific (NP) index), and the Sitka winter

air temperature record. Both models fit the same number of parameters. The AR(1)

model is a ‘short memory’ model in that it has a rapidly decaying autocovariance

sequence, whereas an FD model exhibits ‘long memory’ because its autocovariance

sequence decays more slowly.

Statistical tests cannot distinguish the superiority of one model over the other when

fit with 100 NP or 146 Sitka data points. The FD model does equally well for short

term prediction and has potentially important implications for long term behavior. In

particular, the zero crossings of the FD model tend to be further apart, so they have

more of a ‘regime’-like character; a quarter century interval between zero crossings is four

times more likely with the FD than the AR(1) model. The long memory parameter δ for

the FD model can be used as a characterization of regime-like behavior. The estimated

δs for the NP index (spanning 100 years) and the Sitka time series (168 years) are

virtually identical, and their size implies moderate long memory behavior. Although

the NP index and the Sitka series have broadband low frequency variability and modest

long memory behavior, temporal irregularities in their zero crossings are still prevalent.

Comparison of the FD and AR(1) models indicates that regime-like behavior cannot be

ruled out for North Pacific processes.
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1. Introduction

Difficulties in interpretation of climatic time series center on two issues. The first is recognizing

multidecadal variability from relatively short time series of a century or perhaps a little longer.

The second is isolating a low frequency signal from a time series with large interannual or several

year variability. For example, only 37% of the winter interannual variance of the Aleutian low sea

level pressure time series is on time scales greater than five years (Overland et al. 1999). There

is a current interest in decadal and multidecadal variability of Northern Hemisphere time series.

One facet of this interest is that possible climate change will occur as an increase in amplitude

or a persistent phase of ongoing large scale atmospheric variability (Palmer 1999). An additional

interest is the impact of low frequency variability on ecosystems. Many species such as salmon are

adapted to interannual variability, but are strongly modulated by interdecadal changes (Mantua

et al. 1997). Because of the age structure of marine organisms, Hare and Mantua (2000) in fact

conclude that monitoring North Pacific ecosystems might allow for an earlier identification in sign

changes than is possible from monitoring climate data alone. It is often difficult to establish a

statistically significant difference when comparing different models of climate variability due to the

large confidence intervals associated with the relatively short time series. This lack of data puts us

on the less certain ground of deciding whether a given model is useful based on additional criteria

(von Storch and Zwiers, 1999).

Because of these limitations, it is likely that the true nature of North Pacific time series of

climate processes will remain unknown for a long time to come. In such a situation it is important

to understand the potential consequences of model choices for interpreting the underlying process.

For example, Minobe (1999) suggests bidecadal and pentadecadal oscillations for the Aleutian

low sea level pressure time series. A second concept is regimes where objective change point

techniques suggest significantly different sections in the time series, for example, before and after

1977 (Overland et al. 1999; Hare and Mantua 2000). A chaotic model suggests rapid transitions,

but eventual return to the vicinity of previous locations in state space (Overland et al. 2000). A
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purely stochastic white and red noise view is suggested by Pierce (2001) for the North Pacific and

Wunsch (1999) for the North Atlantic. The assumption of a white noise model is that there are

instabilities in the atmosphere and that energy is cascading to all frequencies in equal amounts. As

Wunsch and Pierce point out, there is by definition considerable low frequency energy in a white

noise process. What is of interest in interpreting climate time series is whether an enhanced low

frequency variance exists. This enhancement might suggest a physical feedback process, such as

air-ocean interaction, which would permit some measure, however small, of enhanced predictability.

This paper investigates the influence of model choice in representing North Pacific atmospheric

processes. We use the wintertime average (Nov–Mar) Aleutian low sea level pressure field as the

basic time series (Trenberth and Paolino 1980). This time series is referred to as the North Pacific

(NP) index. The NP index is a surface index associated with the Pacific North American (PNA)

pattern of hemispheric variability in the troposphere. The NP index also serves as a measure of

atmospheric forcing of North Pacific Ocean variability. We investigate whether the NP index has

characteristics of a long memory process, which is a broadband process that exhibits a persistent

dependence between distant observations (Beran 1994). A default stochastic model suggested by

several authors (von Storch and Zwiers 1999) is the autoregressive moving average (ARMA) process.

We contrast a simple ARMA model, namely, an first order autoregressive (AR(1)) model with a

simple long memory model, namely, a fractionally differenced (FD) process. Both are fit to the

NP index. By inspecting various diagnostic statistics, we conclude that the FD model for the

North Pacific is an equally as viable model of North Pacific variability as the AR(1) model and

that, given the amount of available data, we cannot expect to be able to distinguish between the

two models. While the two models have similar behavior for short term prediction, the FD model

suggests different zero crossing behavior. We then compare our analysis of the NP index (presented

in §2 below) with an analysis of a somewhat longer North Pacific time series, namely, a temperature

record from Sitka, Alaska (§3). We discuss the implications of the two stochastic models applied to

the North Pacific in §4 in terms of run lengths, which could serve as one definition for regime-like

behavior. We state our conclusions in §5.
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2. Statistical Models for the NP index

In this section we consider two stationary models for the NP index. This time series consists

of N = 100 annual values for the years 1900 to 1999 (Figure 1). The two models are a first

order autoregressive (AR(1)) process and a fractionally differenced (FD) process, both of which are

completely determined by three parameters and hence can be regarded as being equally simple. For

each process, one of the parameters is its expected value, and another effectively controls the shape

of the spectral density function (SDF) and the corresponding autocovariance sequence (ACVS). The

final parameter merely adjusts the levels (heights) of the SDF and ACVS. The essential difference

between these two models is that an AR(1) process postulates a rapidly decaying ACVS whereas

the ACVS for an FD process decays much more slowly. This qualitative difference is what is meant

in the literature when an AR(1) process is said to have ‘short memory’ whereas a comparable FD

model is said to have ‘long memory.’

In what follows, we first define each model and outline a procedure for estimating the model

parameters from the NP index, from which we learn that the autocorrelation in this series is fairly

weak overall. We then consider some goodness of fit tests (model diagnostics) for both short and

long memory models, from which we conclude that both models are quite reasonable for the NP

index and that, from a statistical point of view, each model fits equally well. Next we explore how

well we can expect to discriminate between short and long memory models, given a time series with

the length and characteristics of the NP index. We conclude that, since the overall autocorrelation

in the NP index is weak, we would need much more than N = 100 years of data to be able to reject

a short memory model if in fact the NP index were a realization of an FD process (and vice versa).

a. A Short Memory Model for the NP index

Let us consider a short memory model first by regarding the NP index as a realization of a portion

X0, X1, . . . , XN−1 of a stationary Gaussian AR(1) process; i.e., we assume

Xt − µX = φ(Xt−1 − µX) + εt, (1)
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where µX ≡ E{Xt} and |φ| < 1, while {εt} is a Gaussian white noise process with mean zero and

variance σ2
ε (this parameter is sometimes called the ‘innovations’ or ‘prediction error’ variance and

can be interpreted as the mean squared difference between Xt and the best linear predictor of Xt

based upon prior values Xt−1, Xt−2, . . . ). This process has three parameters, namely, µX , φ and

σ2
ε . The last two parameters determine the correlation properties of the AR(1) process because

these fully specify both its SDF SX(·) and its ACVS {sX,τ}:

SX(f) ≡ σ2
ε

|1 − φe−i2πf |2
, |f | ≤ 1

2 , and sX,τ =
σ2

εφ
|τ |

1 − φ2
, τ = . . . ,−1, 0, 1, . . . . (2)

When φ = 0, the AR(1) process becomes a white noise process. We can thus assess the null

hypothesis that the NP index is realization of a Gaussian white noise process by estimating φ and

then ascertaining whether or not the estimated value is significantly different from zero.

In order to fit an AR(1) model to the NP index, we must estimate the three unknown parameters.

We adopt the following standard strategy. First we estimate µX using the sample mean X ≡
1
N

∑
Xt, after which we recenter the series by forming X̃t ≡ Xt −X. We then use the maximum

likelihood (ML) method to estimate the parameters φ and σ2
ε in the AR(1) model X̃t = φX̃t−1 + εt,

i.e., Equation (1) with X̃t replacing Xt and with µX set to zero. (A possible refinement is to

use the ML approach to estimate µX along with φ and σ2
ε , but this more complicated procedure

leads to very little gain in the quality of the estimator for µX – see §8.2 of Beran 1994.) For

completeness, details on the formulation of the ML estimators φ̂ and σ̂2
ε for the parameters φ and

σ2
ε are given in Appendix A. The theory behind these estimators says that asymptotically they are

(i) independent of each other, (ii) unbiased and (iii) normally distributed with var {φ̂} = (1−φ2)/N

and var {σ̂2
ε } = 2σ4

ε /N . Approximate 95% confidence intervals (CIs) for φ and for σε can thus be

constructed using, respectively,[
φ̂− 1.96

(1 − φ̂2)1/2

N1/2
, φ̂+ 1.96

(1 − φ̂2)1/2

N1/2

]
and

[(
σ̂2

ε − 1.96
σ̂2

ε

√
2√

N

)1/2

,

(
σ̂2

ε + 1.96
σ̂2

ε

√
2√

N

)1/2
]
.

(3)

A set of residuals (sometimes called observed innovations or observed prediction errors) that can
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be examined to evaluate the adequacy of the model is given by

ε̂0 ≡ X̃0(1 − φ̂2)1/2 and ε̂t ≡ X̃t − φ̂X̃t−1, t = 1, . . . , N − 1. (4)

Application of the ML procedure to the NP index yields the estimates of φ and σε and associated

95% CIs given in the upper third of Table 1. Note that the interval for φ just barely misses

zero, so there is evidence that the true φ differs from zero at an observed level of significance of

approximately 0.05. Since this result depends on the large sample approximation for the variance of

φ̂, we checked its applicability by generating 10,000 simulated series of length N = 100 from an AR

process with parameter φ = 0.21 (i.e., the observed φ̂) and fitting an AR model to each series (details

on how the simulated series were created are given in Kay 1981). This Monte Carlo experiment

yielded an estimate for var {φ̂} that, when used in place of the large sample approximation, yielded

a 95% CI for φ in perfect agreement with the one stated in Table 1. The upper left-hand plot

of Figure 2 shows the theoretical autocorrelation sequence (ACS) ρX,τ ≡ sX,τ/sX,0 for an AR(1)

process with parameter φ̂ as a solid curve, along with the first part of the sample ACS ρ̂τ for the

NP index (plotted as deviations from zero), where

ρ̂τ ≡
∑N−τ−1

t=0 X̃tX̃t+τ∑N−1
t=0 X̃2

t

, τ = 0, 1, . . . . (5)

Also shown are upper and lower 95% CIs (thin curves) for the ACS under the assumption that the

NP index is a realization of a white noise process (see Corollary 6.3.6.2 of Fuller 1996 for details).

The lower left-hand plot shows an SDF estimate (thick smooth curve) obtained by substituting φ̂

and σ̂2
ε for the corresponding quantities in Equation (2), along with the periodogram Ŝ(fk) for the

NP index (thin jagged curve); i.e.,

Ŝ(fk) ≡
1
N

∣∣∣∣∣
N−1∑
t=0

X̃te
−i2πfkt

∣∣∣∣∣
2

(6)

where fk ≡ k/N , 1 ≤ k < N/2. In the left-hand part of this plot is a confidence interval about a

circle. If we move this interval such that the center of the circle is positioned at a particular Ŝ(fk),

then we have a 95% confidence interval for the true SDF at frequency fk (this interval is based

upon the standard assumption that Ŝ(fk) is proportional to a chi-square random variable with two
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degrees of freedom). Such an interval in fact traps the theoretical AR(1) SDF at all but two of the

fifty Fourier frequencies, indicating that there are no serious discrepancies between the NP index

and the fitted AR(1) model.

b. A Long Memory Model for NP

Suppose now that the NP data is a realization of a portion Y0, Y1, . . . , YN−1 of a stationary Gaussian

fractionally differenced (FD) process. By definition such a process has a first moment given by

µY ≡ E{Yt} and an SDF and ACVF given by

SY (f) =
σ2

ε

|2 sin(πf)|2δ
, |f | ≤ 1

2 , and sY,τ =
σ2

ε sin(πδ)Γ(1 − 2δ)Γ(τ + δ)
πΓ(τ + 1 − δ)

, (7)

where σ2
ε > 0 and −1

2 ≤ δ < 1
2 (Granger and Joyeux 1980; Hosking 1981). The parameter σ2

ε can be

interpreted as an innovations variance, while δ causes an FD process to exhibit long memory when

0 < δ < 1
2 . At low frequencies, we have SY (f) ≈ σ2

ε/|2πf |2δ, so an FD process is approximately

proportional to a power law |f |α with exponent α = −2δ. It follows from Equation (7) and standard

relationships for the Γ function (see, e.g., Abramowitz and Stegun 1964) that the variance of this

process is given by

sY,0 =
σ2

εΓ(1 − 2δ)
Γ2(1 − δ)

(8)

and that, for τ ≥ 1, the ACVF can be computed recursively using the formula

sY,τ = sY,τ−1
τ + δ − 1
τ − δ

.

When δ = 0, the FD process becomes a white noise process, so we can assess the null hypothesis

of white noise for the NP index based upon an estimate of δ.

The unknown parameters in an FD model are µY , δ and σ2
ε . We adopt a strategy similar to

what we used in the AR(1) case by first recentering the series to form Ỹt ≡ Yt − Y , after which we

use the ML method to estimate δ and σ2
ε via δ̂ and σ̂2

ε as described in Appendix A. The theory

behind δ̂ and σ̂2
ε says that these estimators are asymptotically independent of each other, unbiased
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and normally distributed with var {δ̂} = 6/(π2N) and var {σ̂2
ε} = 2σ4

ε/N . Approximate 95% CIs

for δ and σε are given by[
δ̂ − 1.96

√
6

π
√
N
, δ̂ + 1.96

√
6

π
√
N

]
and

[(
σ̂2

ε − 1.96
σ̂2

ε

√
2√

N

)1/2

,

(
σ̂2

ε + 1.96
σ̂2

ε

√
2√

N

)1/2
]
. (9)

As is true when fitting an AR(1) model, the ML procedure leads to a set of residuals ε̂t that we

can use to evaluate the adequacy of the fitted FD model (see Appendix A for details).

Application of the ML procedure to the NP index yields the estimates and 95% CIs shown in

Table 1. As was true for the AR(1) parameter φ, the interval for δ just barely misses zero, so

evidently the true δ differs from zero at an observed level of significance of approximately 0.05. To

ascertain the validity of this CI, we carried out a Monte Carlo experiment analogous to the one for

the AR(1) case and obtained a CI of [0.01, 0.33] for δ, which is very close to the interval [0.02, 0.32]

reported in Table 1 (the simulated FD series were created using an ‘exact’ method described in

Davies and Harte 1987 and Wood and Chan 1994). The upper right-hand plot of Figure 2 shows

the theoretical ACS for an FD process with parameter δ̂ (thick curve). The lower right-hand plot

shows an SDF estimate (thick smooth curve) obtained by plugging δ̂ and σ̂2
ε into the corresponding

quantities in Equation (7). If we compare this estimate to 95% confidence intervals for the true

SDF based upon the periodogram, we find the confidence intervals trap the FD-based estimates

at all but one of the fifty Fourier frequencies, indicating that there are no serious discrepancies

between the NP index and the fitted FD model.

c. Goodness of Fit Tests for Short and Long Memory Models

Figure 2 indicates that, when we take their sampling variability into consideration, the sample ACS

and the periodogram for the NP index are visually in reasonably good agreement with the corre-

sponding theoretical quantities derived from the fitted AR(1) and FD models. A more quantitative

approach for assessing the adequacy of these models is to consider four well-known goodness of fit

test statistics. The results of one or more of these tests could in principle lead us to favor one model

over the other. The first test statistic T1 is an SDF test that compares the periodogram for the NP
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index to the SDF corresponding to the fitted model. The remaining three test statistics make use

of the residuals ε̂t and ε̂t obtained in the process of fitting the AR(1) and FD models. These tests

are built using the concept that, if the proposed model is in fact correct, the residuals should be

approximately a realization of a white noise process. The first such statistic T2 is the cumulative

periodogram test, while the remaining test statistics T3 and T4 are variations on the portmanteau

test, which looks at the squares of a small number of sample autocorrelations of the residuals.

Details about Tj , j = 1, . . . , 4, are given in Appendix B, but the manner in which we use each

test statistic is quite similar. Thus, based upon a computed Tj and a predetermined significance

level α, we can reject the null hypothesis that the NP index is a realization from one of the fitted

models if Tj exceeds the (1−α)× 100% percentage point Qj(1−α) for the statistic under the null

hypothesis. If, for example, we let α = 0.05, we would incorrectly reject the null hypothesis about

5% of the occasions when in fact it is true. Alternatively, if we do not want to use a prespecified

significance level, we can compute the observed critical level α̂, which is the smallest significance

level for which we would end up rejecting the null hypothesis. Thus, if α̂ is quite small, we have

good reason to doubt the validity of the null hypothesis; on the other hand, if α̂ is large compared

to typical preselected values for α (e.g., 0.05 or 0.01), we have no real reason to reject the null

hypothesis.

Table 2 gives the results of applying the four goodness of fit tests to the AR(1) and FD models

for the NP index (in keeping with recommendations in the literature, we set K = N/20 = 5 when

computing and evaluating T3 and T4, but we obtained comparable results with K = 10). For the

sake of comparison, we also used each test statistic on the NP index itself; i.e., we entertained the

null hypothesis that the NP index is a realization of a white noise (WN) process. None of the four

tests rejects the null hypothesis at the 0.05 level of significance for either the AR(1) or FD models,

and all reject the null hypothesis of white noise for the NP index itself. The observed critical levels

α̂ are larger for the FD model for all four Tj , which might suggest that the FD model is slightly

better than the AR(1) model; however, at best this is quite weak evidence. The main conclusion

we can draw from these tests is that the short and long memory models are quite comparable and
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that both models are to be prefered over a simple white noise model.

d. Discriminating Between Short and Long Memory Models

The goodness of fit tests indicate that both models seem to fit equally well and that there is no

compelling statistical evidence that would favor either the short or long memory model for the

NP index. Here we explore the question of how well we can expect to discriminant between a

short and long memory process given a realization as short as the NP index. To do so, let us first

assume that the NP index is in fact a realization of an FD process with model parameters given

by the estimates shown in Table 1. Given this assumption, we could use the machinery outlined

in Appendix A to convert the NP index into a set of residuals that would in fact be a realization

of a white noise process. Suppose, however, that we incorrectly entertain an AR(1) model with

parameter φ̂ as given in Table 1 to obtain a set of residuals via Equation (4). These residuals would

be approximately a realization of a stationary process, say Vt, whose SDF is given by

SV (f) = σ̂2
ε

|1 − φ̂e−i2πf |2

|2 sin(πf)|2δ̂
. (10)

The creation of Vt amounts to subjecting an FD process to a prewhitening filter in which the filter is

in fact appropriate for an AR(1) process. If the fitted AR(1) and FD models are in fact comparable

over a range of frequencies whose lower limit is approximately equal to the inverse of the total time

span of the available data, we might expect a goodness of fit statistics to be unable to distinguish

between Vt and a white noise process, but, by making N sufficiently, we can expect to make the

distinction. Conversely, we can swap the roles of the AR(1) and FD processes in this exercise,

leading us to a set of residuals that are a realization of a process, say Wt, with SDF given by

SW (f) = σ̂2
ε

|2 sin(πf)|2δ̂

|1 − φ̂e−i2πf |2
. (11)

Andersson (1998) has previously studied the implications of missmatching short and long memory

models in the context of forecasting economic time series.

To determine how large N must be before we can reasonably expect to reject the null hypothesis

that a fitted model is adequate when in fact the time series is a realization of a different process,
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we conducted a series of Monte Carlo experiments that yielded an estimate of the probablilty

of rejecting the null hypothesis for sample sizes ranging from N = 400 up to N = 6000 (see

Appendix C for details). Figure 3 shows plots of the probability of rejection as a function of sample

size under the two scenarios. The left-hand plot in this figure is for the case when we fit an AR(1)

model to a realization of an FD process with parameters δ̂ and σ̂2
ε . This plot indicates that, in

order to have a 50% chance of rejecting the null hypothesis , we would require sample sizes of about

N = 2500, 1700, 500 and 500 when using, respectively, the T1, T2, T3 and T4 test statistics. The

right-hand plot shows that, when the roles of the AR(1) and FD processes are swapped, we would

now need N = 750 when using the T2, T3 and T4 test statistics and an N in excess of 4000 for

T1. All of these sample sizes are considerably larger than the N = 100 values that make up the

NP index, thus reinforcing the notion that, given the weak overall correlation that is exhibited by

the NP index and given the amount of data that is available to us, we cannot hope to distinguish

between short and long memory models.

3. Statistical Models for Sitka Air Temperature

Let us now consider the same two statistical models for the Sitka winter air temperature time

series (Figure 4). This time series consists of 146 data values collected over a 168 period (1829 to

1996), so there are 22 years for which there are no recorded values. Sitka lies in the eastern Gulf

of Alaska. Winter temperature anomalies relate to changes in the wind field with more southerly

winds producing warm anomalies. These winds would respond in part to both the intensity and

east/west location of the Aleutian Low. For comparison, we fit AR(1) and FD models both to the

original unequally sampled series and to an equally sampled version of the Sitka series formed by

linearly interpolating values for the missing years. While the interpolated series can be handled

using exactly the same ML estimation procedures as in the case of the NP index, the unequally

sampled Sitka series requires an adaptation of these procedures that can deal with missing values

(see Appendix A for details). The resulting estimates and corresponding 95% confidence intervals

for the uninterpolated and interpolated series are displayed in, respectively, the middle and bottom
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thirds of Table 1 (for the uninterpolated series, we used Monte Carlo experiments to verify that

the CIs based upon Equations (3) and (9) with N = 146 are indeed accurate). The estimated φ

and δ parameters for the uninterpolated series are quite comparable to the estimates for the NP

index. The corresponding parameter estimates for the interpolated series are somewhat higher,

suggesting that a slightly stronger degree of autocorrelation has been artificially introduced by

the interpolation procedure. As was done in Figure 2 for the NP index, Figure 5 shows the

sample ACS and periodogram for the interpolated series, along with the theoretical ACSs and

SDFs corresponding to the AR and FD processes that were fit to the uninterpolated series. Based

upon these plots and the goodness of fit tests, we can conclude, as for the NP index, that the AR(1)

and FD models are quite comparable for the Sitka series and that there is no statistical evidence

to favor one model over the other.

4. Discussion

a. Implications of Short versus Long Memory Models

Based upon the previous sections, there is no statistical reason to prefer an AR(1) process over

an FD process as a model for the NP and Sitka series (or vice versa). Both processes depend

upon three parameters, so both have the same degree of simplicity. We cannot thus appeal to the

principle of Occram’s razor here to make a case for one process over the other. Nonetheless, the

fact that the two processes appear to describe both series equally well does not mean that there

are not potentially important implications if we arbitrarily select one of these processes to model

certain statistical properties of these series. As an illustration of this fact, here we consider the

extent to which the two processes lend support to the notion of ‘regimes’ in the NP index.

Loosely speaking, a regime is an interval of time during which a time series remains predom-

inantly either above or below its long term average value. To clarify this idea, let us consider

Figure 1, which shows the NP index (thin curve) along with a five year running average of the

index (thick curve) and a horizontal line indicating the sample mean of the entire series (1009.8).
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In the NP index itself there appear to be intervals over which the index is predominantly above

its sample mean. For example, from 1901 to 1923, all of the NP values were above the sample

mean with the exception of the ones for 1905 and 1919. This stretch of 23 years would constitute

a positive regime and is clearly identified in the five year running average (see also Minobe 1999).

The idea behind the running average is to quantify the notion of ‘predominantly above,’ but, while

the choice of five years is admittedly subjective, it is in keeping with smoothing procedures typ-

ically applied to climatological time series in the literature to reduce the influence of interannual

variability. After 1923, we can see that the running averages are predominantly (but not strictly)

below the sample mean up to 1946. Based upon this visual inspection, we might be tempted to

deem this 23 year interval to be a negative regime (and to formulate a hypothesis that a ‘typical’

regime lasts 23 years), but this is obviously a subjective judgement that is open to valid criticism. If

we take the definition of a regime to be a contiguous stretch over which a five year running average

is strictly above or below the sample mean, then the period from 1924 to 1946 breaks up into seven

regimes (four of length one, and one each of lengths three, seven and nine). If in fact climatological

series such as the NP index were to exhibit regimes with ‘typical’ sizes, we could presumably use

this information to help predict when a switch from, say, a positive to a negative regime is about

to occur.

While the predictability of regime shifts for the NP index is open to question when we view the

series as a realization of either a short or long memory process, it is nonetheless of interest to see

how the fitted FD and AR(1) models impact what we would deduce about the distribution of regime

sizes. Knowledge of this distribution gives us some idea as to how compatible these two processes

are with the idea of regimes, or at least tell us which process is more likely to generate realizations

that supporters of the regime idea would deem to be realistic. While it is difficult to determine

the distribution of regime sizes analytically, it is easy to do so via Monte Carlo experiments. To

do so, we generated 1000 realizations of size 1024 from a zero mean FD process whose parameter

δ is dictated by our fitted FD model for the NP index. In order to account for the uncertainity

in the parameter estimate δ̂, we used its large sample distribution to generate the FD parameter
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δk for the kth such realization; i.e., we selected δk from a Gaussian distribution with mean δ̂ and

variance 6/(100π2). We need not concern ourselves with uncertainty in the estimate for σ2
ε because

this parameter has no effect on how much time a realization spends above or below the process

mean. For each realization so generated, we then determined how many regimes there were of sizes

unity and up. We used the following two definitions for a regime. Let xt, t = 0, . . . , 1023, denote

one of the realizations. In the first definition, the starting index ts for a positive regime is one

for which xts ≥ 0 and xts−1 < 0, while the ending index te is the one satisfying te ≥ ts, xte ≥ 0

and xte+1 < 0 with xts+k ≥ 0 for k = 0, . . . , te − ts (a negative regime is defined analogously by

xts < 0 and xts−1 ≥ 0 along with xte < 0 and xte+1 ≥ 0). In the second definition, we define

yt = (xt−2 + xt−1 + xt + xt+1 + xt+2)/5 and then identify regimes by applying the first definition

to this five point running average. Here we wish to suppress the influence of the large interannual

variability. For either definition, the regime size is taken to be te − ts + 1. We also only tabulated

“fully expressed” regimes; i.e., regimes that might have started prior to index t = 0 or after index

t = 1023 were not used. This procedure, in fact, biases the distribution somewhat toward smaller

regime sizes, but this bias should be relatively small and can be lessened by increasing the size of

each realization beyond 1024. An analogous procedure was followed for the AR(1) model.

Figure 6 summarizes the results of the Monte Carlo experiments. Here we plot the empirically

determined probability of a regime size being greater than or equal to a specified length for the

AR(1) model (thin curves) or FD model (thick) when used with the first or second definition for a

regime (left- and right-hand plots, respectively). We see that the FD model tends to yield regime

sizes that are longer than those for the AR(1) model. For example, if we consider the ‘typical’

regime size of 23 years suggested by our visual inspection of the first half of the NP index, we

see that a run of this length or longer is four times more likely to occur in the five year running

averages with the FD model than with the AR(1) model. As a second example, a run of 35 years is

ten times more likely to occur with the FD model. Thus, even though the statistics for short runs

are quite comparable in both models, the FD model suggests a greater likelihood of observing long

runs, which is in keeping with visual analyses that inspired the notion of regimes.
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In the previous sections we have noted that the FD model is as viable a model for the NP and

Sitka series as the AR(1) model. In this section one notion for regime-like behavior is presented in

which extended intervals between zero crossings are shown to be consistent with the FD model, but

it is not well supported by the AR(1) model. Also, since the FD model is also stochastic, regime-

like behavior based on zero crossings does not necessarily require a deterministic oscillation model.

The fact that FD models are more supportive of regime-like behavior allows us to make practical

discrimination between AR(1) and FD models based upon auxiliary information. For example,

the evidence of regimes in several biological systems in the North Pacific is strong, particularly for

salmon (Mantua et al. 1997). Our FD model is consistent with the quite reasonable hypothesis that

the physical environment in the North Pacific is a contributing factor to the regimes observed in

these biological systems. Auxiliary information from the physical system can also be used to lend

support for the FD model over the AR(1) model. The maximum likelihood analysis of Haines and

Hannachi (1995) suggests that the PNA pattern, and thus the NP index, have preferred bimodal

states. Another plausible mechanism for persistence or a long memory effect is ocean atmospheric

feedback in the North Pacific (Latif and Barnett 1994). Feldstein (2000) suggests that interannual

variability of the PNA pattern arises both from climate noise and external forcing, which might be

consistent with the level of persistence suggested by the FD model.

b. Interpretation and Adequacy of Long Memory Models

From Table 1 we see that the estimated values of the FD parameter δ for both the NP and Sitka

series are around 0.2. The allowable range of δ for stationary FD models with long memory

dependence is 0 < δ < 0.5. As δ approaches zero, an FD process approaches white noise, which has

‘no memory’ in the sense that its random variables are pairwise uncorrelated. At the other extreme,

as δ approaches a half, realizations from the FD process exhibit a strong long memory effect. To

get a better idea of how to interpret δ, Figure 7 shows two columns of simulated FD series (thin

curves), each with four rows. Each row corresponds to a different choice of δ. From top to bottom,

these are δ = 0.02 (the lower end of the 95% CI for δ for the NP index, which is quite close to
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white noise), 0.17 (the estimated value for the NP index), 0.32 (the upper end of the 95% CI, which

corresponds to a moderate long memory effect) and 0.45 (a value in the upper allowable range

for δ corresponding to a strong long memory effect). All four processes have zero mean and unit

innovations variance, so they only differ in the choice of δ. All four time series in a given column

were formed using the same realization of white noise so that differences amongst these series can

be attributed entirely to δ (i.e., we used the exact simulation method described in Davies and Harte

(1987) and Wood and Chan (1994), which works by transforming 2N white noise deviates into a

correlated series of length N – we have just used the same white noise sequence to form the four

simulated FD series). Note that, as the degree of the long memory effect increases, we see a more

regime-like structure in the series; i.e., there is a greater tendancy for the series to be above (or

below) the process mean of zero for long stretches of time. To quantify this, let us consider five

point running averages (the thick curves on each plot). As δ increases, the total number of runs in

the five point running averages tends to decrease (24, 16, 16 and 12 in, respectively, top to bottom

left-hand plots; 20, 15, 13 and 11 in right-hand plots), while the length of the longest run increases

(12, 17, 18 and 23, left-hand plots; 11, 21, 24 and 25, right-hand plots). The results are not linear

in δ. In fact, the best estimate of δ = 0.17 for the NP index has similar behavior to δ = 0.32, and

is substantially different from the white noise model.

We can thus interpret δ as an indicator of how much regime-like structure there is in a time

series: if δ is close to zero, there is very little tendency for the series to remain above its process

mean for long stretches of time, whereas the opposite is true when δ is close to a half. If we

consider that the time series has both short term (interannual) variability and long term memory,

then even the modest value of δ = 0.17 is enough to change the zero crossing behavior to provide a

regime-like behavior in the five year running means. Thus, the estimated δ parameters for both the

NP and Sitka series are significantly different from zero (i.e., they cannot be reasonably taken to

be a realization of a white noise process), and the size of δ suggests there is moderate long memory

structure, based on run statistics. The appeal of FD models is that they have a single parameter (δ)

that can help us understand if a particular climatological series exhibits weak, moderate or strong
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long memory characteristics. For the NP and Sitka series, we can conclude from the estimated δ

that there are structures that are compatible with the notion of regimes, but both series cannot

be characterized as being dominated by a single strong long memory process. In addition, by

inspection of Figures 1, 4, and 7, there is a broad distribution of zero crossing intervals. If the FD

model were the true underlying process for the NP index, then even though regimes are a major

feature, prediction would be problematic.

5. Conclusions

We have compared a first order autoregressive (AR(1)) model with a fractionally differenced (FD)

model applied to two North Pacific (NP) time series, the winter NP sea level pressure index which

is centered on the Aleutian low region, and the winter average of the monthly termperature records

from Sitka, Alaska. Both models reduce to white noise when one of their model parameters is

zero. For both time series, this parameter is (just barely) significantly different from zero at a 95%

level of confidence, and hence there is evidence to say that both time series have significant serial

correlation. The AR(1) model has a rapid drop off of the autocovariance sequence, which essentially

models the large interannual variability of the time series. The autocovariance sequence for the FD

model has a similar drop for short lags, but also has a long tail of small but positive correlations

at longer lags, which is termed ‘long memory’ in the statistical literature. The statistical analysis

of the winter averaged NP index shows that the AR(1) and FD models fit equally well. A similar

analysis using the longer Sitka air temperature series corroborates this result. Like the AR(1)

model, fitting the FD model to a given time series involves the estimation of just three parameters;

hence the models are equally parsimonious. The FD model has the additional property that, unlike

the AR(1) model, it creates regime-like behavior in which the winter averaged NP index tends to

remain above or below the mean for a number of years. This is true even when the low frequency

variance is a relatively small percentage of the total, as it is for the NP and Sitka series.

To fit the AR(1) and FD models to climatic series, we have adopted a rigorous statistical ap-

proach appropriate for the problem at hand. This approach includes maximum likelihood estimation
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of model parameters (adapted, in the case of the Sitka series, to handle missing values in a time

series without the need for a questionable interpolation scheme); use of Monte Carlo experiments

to verify large sample approximations to the variance of the estimated parameters; use of goodness

of fit test statistics to evaluate the fitted models; and an evaluation of the performance of these test

statistics in the presence of incorrect models. This approach should prove useful to investigators

who wish to examine other climatic data sets from a short versus long memory perspective.

Based on synthetic time series derived from both the AR(1) and FD models, we show that it

would take a time series of several hundred years to discriminate between the two models as being

the underlying process for the North Pacific. In such a situation with relatively short time series

and large interannual variability, we are left with the less attractive option of comparing models

rather than claiming that one model is statistically more appropriate than another. Hence, in

modeling climate variability in the North Pacific, it is necessary to rely on model-to-model and

time series to time series comparisons, and to bring in additional information outside the time

series in order to choose between models. For example, two distinct North Pacific time series,

the NP index and the Sitka air temperatures, both have a fitted FD model with nearly the same

parameter value, δ = 0.17 and δ = 0.18. Physical arguments can also be brought in as additional

information. For example, in the North Pacific there are atmosphere-ocean models that suggest

feedbacks on decadal scales. The PNA teleconnection pattern has been shown to have bimodal

behaviors. Perhaps the strongest evidence for a FD model over an AR(1) model is from biological

time series (Hare and Mantua, 2000). Well established regime behavior seen in the biology of the

region, such as geographic changes in salmon populations, support evidence for shifts in the physical

system near 1925, 1947, and 1977. However, the strongest statement that we can make from our

analysis is that regime-like behavior for the North Pacific, based on the long memory model, cannot

be ruled out based on statistical grounds.

One important point that our work draws attention to regards the interpretation of δ, the

parameter in the FD model that determines its long memory characteristics. This parameter varies

from δ = 0.0 for white noise to just below 0.5 for a strong long memory effect. However, if we
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consider regime-like behavior based on interval statistics for zero crossings, then the behavior of δ

is nonlinear. The value of the parameter for the two North Pacific time series is δ ≈ 0.17, yet its

behavior in terms of run lengths was similar to δ = 0.32 and both of these values had behavior

closer to δ = 0.45 than δ = 0.02. Apparently, the small displacement contributions from long

periods is enough so that weak excursions at interannual scales do not cross the zero level. The

δ parameter is a measure of the tendency to form regimes. Because the FD model is completely

stochastic, it cannot be used to make deterministic predictions for the beginning and duration of

regimes. Our results show, however, that North Pacific time series are consistent with moderate

regime-like behavior, based on the FD model. The results of our comparison of the FD model with

the AR(1) model leave room for further characterization and potential prediction of North Pacific

climate processes.
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Appendix A: Maximum Likelihood Estimation

Suppose that U ≡ [U0, U1, . . . , UN−1]T is a vector of random variables that form a portion of a

real-valued Gaussian stationary process with zero mean and ACVS {sU,τ : τ = . . . ,−1, 0, 1, . . . }.

Let Σ be the covariance matrix for U; i.e., the (j, k)th element of Σ is given by sU,j−k, where

0 ≤ j, k ≤ N − 1. The joint probability density function for these RVs can be written as

f(U) ≡ 1
(2π)N/2|Σ|1/2

e−UT Σ−1U/2, (12)

where |Σ| and Σ−1 are, respectively, the determinant and inverse of Σ. Suppose now that {sU,τ}

and hence Σ are completely determined by a vector a of K unknown parameters, where typically

K  N . Given U, we can regard the right-hand side of Equation (12) as an implicit function of a

known as the likelihood function:

L(a | U) ≡ 1
(2π)N/2|Σ|1/2

e−UT Σ−1U/2.

The maximum likelihood (ML) estimator â for a is the vector that maximizes L(a | U) as a function

of a; equivalently, the ML estimator is the vector that minimizes

l(a | U) ≡ −2 log (L(a | U)) −N log (2π) = log (|Σ|) + UT Σ−1U.

When dealing with a time series with missing values (e.g., the Sitka series), we can reformulate

the above by letting U just contain the random variables corresponding to the actual observations

and by deleting all rows and columns Σ corresponding to the missing values. The ML estimators

satisfy a number of optimality criteria and hence are generally to be preferred over other estimators,

particularly when dealing with small sample sizes (see, e.g., §5.2 of Priestley 1981).

a. MLEs for an AR(1) Process

In the case of an AR(1) process, we take U to be [X̃0, X̃1, . . . , X̃N−1]T , where the recentered time

series {X̃t} is assumed to obey the model X̃t = φX̃t−1+εt. The process {εt} is taken to be Gaussian

white noise with mean zero and variance σ2
ε . The ACVS and hence Γ depend on two parameters,
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namely, φ and σ2
ε . The ML estimator φ̂ for φ is the value of φ that minimizes the reduced (or

profile) log likelihood function, namely,

l(ar)(φ) ≡ − log(1 − φ2) +N log(C(φ)/N) +N, where C(φ) ≡ X̃2
0 (1 − φ2) +

N−1∑
t=1

(X̃t − φX̃t−1)2

(for details, see, e.g., §9.8 of Percival and Walden 1993). Differentiation of the above yields

A(ar)(φ) ≡ φC(φ)
N

− (1 − φ2)

(
N−1∑
t=1

X̃tX̃t−1 − φX̃2
t

)
,

which is a cubic polynomial in φ. The desired estimator φ̂ is the root of the polynomial equation

A(ar)(φ) = 0 that minimizes l(ar)(φ). The corresponding ML estimator of σ2
ε is given by σ̂2

ε ≡

C(φ̂)/N . When dealing with a time series with missing values, the above formulation does not

apply, but we can make use of a Kalman filtering (state space) formulation of an AR(1) process to

compute the ML estimators for φ and σ2
ε (see Jones 1980 for details).

b. MLEs for Fractionally Differenced Processes

In the case of an FD process, we take U to be [Ỹ0, Ỹ1, . . . , ỸN−1]T , where the recentered time

series {Ỹt} is assumed to obey an FD process with parameters φ and σ2
ε (these fully determine

the covariance matrix Γ). We can formulate a reduced log likelihood function for δ as follows. We

first compute the partial autocorrelation sequence (PACS) φt,t, t = 1, . . . , N − 1, which is given by

φt,t = δ
t−δ (Hosking 1981). The PACS is used to recursively compute the coefficients of the best

linear predictor of Ỹt given Ỹt−1, . . . , Ỹ0 for t = 2, . . . , N − 1. These coefficients are given by

φt,k = φt−1,k − φt,tφt−1,t−k, k = 1, . . . , t− 1,

and are used to form

et ≡ Ỹt −
t∑

k=1

φt,kỸt−k, t = 1, . . . , N − 1

(we define e0 to be Ỹ0). We also use the PACS is to compute a sequence {vt} relating var {et} to

var {e0} = var {Ỹt} (the latter is given by Equation (8)):

vt = var {e0}
t∏

n=1

(1 − φ2
n,n), t = 0, . . . , N − 1.
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Given Ỹt, the sequences {φt,k}, {et} and {vt} are all implicit functions of δ and are entirely deter-

mined by it. Define ε̂t ≡ et/
√
vt, and let

σ̂2
ε(δ) ≡

1
N

N−1∑
t=0

ε̂2
t . (13)

The reduced log likelihood takes the form

l(fd)(δ) ≡ N log (σ̂2
ε(δ)) +N log

(
Γ(1 − 2δ)
Γ2(1 − δ)

)
+

N−1∑
t=1

(N − t) log (1 − φ2
t,t).

We can numerically minimize the above to obtain the ML estimate δ̂. After we have δ̂, we can

obtain the ML estimate σ̂2
ε for σ2

ε by substituting δ̂ into Equation (13). Again, we cannot use the

above formulation for time series with missing values, but the ML procedure can be adjusted to

handle this case (see Palma and Chan 1997 for details).

Appendix B: Goodness of Fit Tests

Here we describe the four statistical tests that we used to assess the adequacy of short and long

memory models. In what follows, we let êt stand for the residuals under either the AR model (i.e.,

ε̂t) or the FD model (i.e., ε̂t).

a. Spectral Density Function Test

Let Ŝ(fk) be the periodogram for the NP index at the Fourier frequency fk ≡ k/N as given in

Equation (6). Let S(fk; θ̂) be a theoretical SDF that depends on a vector θ̂ of estimated parameters.

In the AR(1) and FD cases, the functional forms for S(fk; θ̂) are given in, respectively, Equations (2)

and (7), and we have, respectively, θ̂ = [φ̂, σ̂2
ε ]

T and θ̂ = [δ̂, σ̂2
ε ]

T . Letting M be the integer part of

1
2(N − 1), the SDF test statistic is given by

T1 ≡ NA

4πB2
, where A ≡

M∑
k=1

(
Ŝ(fk)

S(fk; θ̂)

)2

and B ≡
M∑

k=1

Ŝ(fk)

S(fk; θ̂)
.

Under the null hypothesis of a correct model, this test statistic is asymptotically normally dis-

tributed with mean 1/π and variance 2/(π2N) (for details, see Milhøj 1981 and §10.2 of Beran
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1994). We can reject the null hypothesis at level of significance α when
√
N/2(πT1 − 1) exceeds

the upper (1 − α) × 100% percentage point Q1(1 − α) for the standard normal distribution; e.g.,

Q1(1 − α) .= 1.96 when α = 0.05. The critical level α̂ for T1 is given by Φ(
√
N/2[πT1 − 1]), where

Φ(·) is the cumulative distribution function for a standard normal random variable.

b. Cumulative Periodogram Test

Let Ŝê(fk) be the periodogram for êt at the Fourier frequency fk ≡ k/N , i.e., the right-hand side

of Equation (6) with X̃t replaced by êt. We form the normalized cumulative periodogram

Pl ≡
∑l

k=1 Ŝe(fk)∑M
k=1 Ŝe(fk)

, l = 1, . . . ,M.

The test statistic T2 is given by max {D+, D−}, where

D+ ≡ max
1≤l≤M−1

(
l

M − 1
− Pl

)
and D− ≡ max

1≤l≤M−1

(
Pl −

l − 1
M − 1

)
. (14)

We reject the null hypothesis of white noise at the α level of significance if D exceeds the upper

α× 100% percentage point Q2(1 − α) for D under the null hypothesis. To a good approximation,

we have

Q2(1 − α) ≡ C(1 − α)
(M − 1)1/2 + 0.12 + 0.11

(M−1)1/2

,

where C(0.9) = 1.224, C(0.95) = 1.358 and C(0.99) = 1.628 (Stephens 1974). We can get some

idea as to what the critical value α̂ is by comparing the computed T2 to Q2(0.90), Q2(0.95) and

Q2(0.99).

c. Portmanteau Tests

The portmanteau test is designed to see if the sample ACS of the residuals for lags τ = 1, . . . ,K is

consistent with a hypothesis of zero mean white noise, where K is taken to be relatively small in

relation to the sample size N (the sample ACS is defined as in Equation (5) with X̃t replaced by

êt). Here we consider two variations on the portmanteau test, namely, the Box–Pierce test statistic
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T3 and the Ljung–Box–Pierce test statistic T4, given by, respectively,

T3 = N
K∑

τ=1

ρ̂2
τ and T4 = N(N + 2)

K∑
τ=1

ρ̂2
τ

N − τ

(Box and Pierce 1970; Ljung and Box 1978). For either test statistic, we reject the null hypothesis

of white noise at significance level α when the statistic exceeds the (1−α)×100% percentage point

Q3(1 − α) = Q4(1 − α) for the chi-square distribution with K − 1 degrees of freedom. If we let

χ2
K−1(·) represent the corresponding cumulative distribution function, then the critical levels for

these tests are given by χ2
K−1(T3) and χ2

K−1(T4).

Appendix C: Performance of Test Statistics under Incorrect Models

Here we give some details on the Monte Carlo experiments used to determine the probability of

rejecting an incorrect model using one of the goodness of fit test statistics discussed in Appendix B.

Suppose first that the NP index is in fact a realization of an FD process with parameters δ̂ and σ̂2
ε

given as in Table 1. Given a particular sample size N , we can generate a realization from this process

(Davies and Harte 1987; Wood and Chan 1994). We then fit an AR(1) model to this realization

using the maximum likelihood method described in Appendix A and apply all four goodness of fit

test statistics to assess the hypothesis that the AR(1) model is an adequate fit. We repeat this

procedure M times and keep track of the number of times Mj that the test statistic Tj rejects the

null hypothesis. Our estimate of the probability that the Tj will reject the null hypothesis is given

by p̂j ≡ Mj/M . The statistics of the binomial distribution says that, for large M , the estimator

p̂j should be approximately normally distributed with a mean value given by the true rejection

probablility pj and a variance given by pj(1 − pj)/M . We can thus estimate the standard error in

p̂j using [p̂j(1− p̂j)/M ]1/2. By letting M = 2500, we found that the estimated standard errors were

no larger than 0.02. The left-hand plot of Figure 3 shows p̂j as a function of sample size for the

four test statistics. By reversing the roles of the AR(1) and FD processes, we obtain the right-hand

plot.
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φ̂ (AR) σ̂ε (AR) δ̂ (FD) σ̂ε (FD)

NP 0.21 2.37 0.17 2.35

95% CI [0.02, 0.40] [2.01, 2.67] [0.02, 0.32] [2.00, 2.66]

Sitka 0.18 1.39 0.18 1.37

95% CI [0.02, 0.34] [1.22, 1.54] [0.05, 0.30] [1.20, 1.52]

Sitka (I) 0.29 1.33 0.24 1.30

95% CI [0.14, 0.43] [1.18, 1.47] [0.13, 0.36] [1.15, 1.43]

Table 1: Autoregressive (AR) and fractionally differenced (FD) process parameter estimates for

the NP index, uninterpolated Sitka air temperature and interpolated Sitka air temperature series.
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j model Tj Qj(0.90) Qj(0.95) Qj(0.99) α = 0.05 test result α̂

1 AR 0.30 0.38 0.39 0.42 fail to reject 0.67

FD 0.28 " " " fail to reject 0.78

WN 0.39 " " " reject 0.05

2 AR 0.10 0.17 0.19 0.23 fail to reject � 0.1

FD 0.07 " " " fail to reject � 0.1

WN 0.21 " " " reject ≈ 0.03

3 AR 4.65 7.74 9.45 13.31 fail to reject 0.32

FD 3.12 " " " fail to reject 0.54

WN 12.63 " " " reject 0.01

4 AR 4.97 7.74 9.45 13.31 fail to reject 0.29

FD 3.34 " " " fail to reject 0.50

WN 13.31 " " " reject 0.01

Table 2: Model goodness of fit tests for the NP index.
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Figure 1: Plot of the NP index (thin curve) and a five year running average of the index (thick).

The thin horizontal line depicts the sample mean (1009.8) for the index.
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Figure 2: Sample autocorrelation sequence (ACS) and periodogram for the NP index, along with

theoretical ACSs and spectral density functions (SDFs) for fitted AR process (left-hand plots) and

fitted FD process (right).
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Figure 3: Probability (as a function of sample size) of rejecting the null hypothesis that a fitted

model A is adequate for a realization of a process B when using the test statistics T1, . . . , T4. In the

left-hand plot, model A and process B are, respectively, an AR(1) model and an FD process with

parameters δ and σ2
ε set to the values estimated for the NP index; in the right-hand plot, A and

B are an FD model and an AR(1) process with φ and σ2
ε again set to the values estimated for the

NP index. In both cases the best statistics for identifying that a particular model is not correct are

the two portmanteau test statistics T3 and T4 (however, the cumulative periodogram test statistic

T2 is competitive with T3 and T4 when fitting an FD model to realizations of an AR(1) process).
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Figure 4: Plot of Sitka winter air temperatures (broken curve). The thin horizontal line depicts

the sample mean (2.13) for the series.
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Figure 5: Sample autocorrelation sequence (ACS) and periodogram for Sitka winter air temper-

atures, along with theoretical ACSs and spectral density functions (SDFs) for fitted AR process

(left-hand plots) and fitted FD process (right).
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Figure 6: Probability of observing a run that is greater than or equal to a specified run length.

The thin (thick) curves denote the AR (FD) process. The left-hand plot is for processes without

smoothing, whereas the right-hand plot is for processes subjected to a five year running average.
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Figure 7: Simulated realizations of FD processes with different parameters δ (thin curves) along

with five point running averages (thick).

34



REFERENCES

Abramowitz, M., and I. A. Stegun, editors, 1964: Handbook of Mathematical Functions. US Government

Printing Office (reprinted in 1968 by Dover Publications), 1046 pp.

Andersson, M. K., 1998: On the effects of imposing or ignoring long memory when forecasting. Working

Paper Series in Economics and Finance No. 225, Department of Economic Statistics, Stockholm School

of Economics, 14 pp .

Beran, J., 1994: Statistics for Long Memory Processes. Chapman and Hall, 315 pp.

Box, G. E. P., and D. A. Pierce, 1970: Distribution of residual autocorrelations in autoregressive integrated

moving average time series models. J. Amer. Stat. Assoc., 65, 1509–1526.

Davies, R. B., and D. S. Harte, 1987: Tests for Hurst effect. Biometrika, 74, 95–101.

Feldstein, S. B., 2000: The time scale, power spectra and climate noise properties of teleconnection patterns.

J. Climate, 13, 4430–4440.

Fuller, W. A., 1996: Introduction to Statistical Time Series (Second Edition). Wiley–Interscience, 698 pp.

Granger, C. W. J., and R. Joyeux, 1980: An introduction to long-memory time series models and fractional

differencing. J. Time Series Analy. 1, 15–29.

Haines, K., and A. Hannachi, 1995: Weather regimes in the Pacific from a GCM. J. Atmos. Sci., 52,

2444–2462.

Hare, S. R., and N. J. Mantua, 2000: Empirical evidence for North Pacific regime shifts in 1977 and 1989.

Prog. Oceanogr., 47, 103–146.

Hosking, J. R. M., 1981: Fractional differencing. Biometrika, 68, 165–176.

Jones, R. H., 1980: Maximum likelihood fitting of ARMA models to time series with missing observations.

Technometrics, 22, 389–395.

Kay, S. M., 1981: Efficient generation of colored noise. Proc. IEEE, 69, 480–481.

Latif, M., and T. P. Barnett, 1994: Causes of decadel climate variability over the North Pacific and North

America. Science, 266, 634–637.

Ljung, G. M., and G. E. P. Box, 1978: On a measure of lack of fit in time series models. Biometrika, 65,

297–303.

Mantua, N. J., S. R. Hare, Y. Zang and J. M. Wallace, 1997: A Pacific interdecadal climate oscillation with

impacts on salmon production. Bull. Am. Meteorol. Soc., 78, 1069–1079.

Milhøj, A., 1981: A test of fit in time series models. Biometrika, 68, 177–187.

35



Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role

in climate regime shifts. Geophys. Res. Lett., 26, 855–858.

Overland, J. E., J. M. Adams and N. A. Bond, 1999: Decadal variability of the Aleutian low and its relation

to high-latitude circulation. J. Clim., 12, 1542–1548.

Overland, J. E., J. M. Adams and H. O. Mofjeld, 2000: Chaos in the North Pacific: spatial modes and

temporal irregularity. Prog. Oceanogr., 47, 337–354.

Palma, W., and N. H. Chan, 1997: Estimation and forecasting of long-memory time series with missing

values. J. Forecast, 16, 395–410.

Palmer, T. N., 1999: A non-linear dynamical perspective on climate prediction. J. Clim., 12, 575–591.

Percival, D. B., and A. T. Walden, 1993: Spectral Analysis for Physical Applicataions: Multitaper and

Conventional Univariate Techniques. Cambridge University Press, 583 pp.

Pierce, D. W., 2001: Distinguishing coupled ocean-atmosphere interactions from background noise in the

North Pacific. Prog. Oceanogr., 47, in press.

Priestley, H. B., 1981: Spectral Analysis and Time Series. Academic Press, 890 pp.

Stephens, M. A., 1974: EDF statistics for goodness of fit and some comparisons. J. Amer. Stat. Assoc., 69,

730–737.

Trenberth, K. E., and D. A. Paolino, 1980: The Northern Hemisphere sea level pressure data set: Trends,

errors and discontinuites. Mon. Weather Rev., 108, 855–872.

von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University

Press, 484 pp., p. 71.

Wood, A. T. A., and G. Chan, 1994: Simulation of stationary Gaussian processes in [0, 1]d. J. Comp. Graph.

Stat,, 3, 409–432.

Wunsch, C., 2000: The interpretation of short climate records, with comments on the North Atlantic and

Southern Oscillations. Bull. Am. Meteorol. Soc., 80, 245–255.

36


