17 research outputs found

    Endosymbiotic bacteria nodulating a new endemic lupine Lupinus mariae-josephi from alkaline soils in Eastern Spain represent a new lineage within the Bradyrhizobium genus

    Get PDF
    Lupinus mariae-josephi is a recently described endemic Lupinus species from a small area in Eastern Spain where it thrives in soils with active lime and high pH. The L. mariae-josephi root symbionts were shown to be very slow-growing bacteria with different phenotypic and symbiotic characteristics from those of Bradyrhizobium strains nodulating other Lupinus. Their phylogenetic status was examined by multilocus sequence analyses of four housekeeping genes (16S rRNA, glnII, recA, and atpD) and showed the existence of a distinct evolutionary lineage for L. mariae-josephi that also included Bradyrhizobium jicamae. Within this lineage, the tested isolates clustered in three different sub-groups that might correspond to novel sister Bradyrhizobium species. These core gene analyses consistently showed that all the endosymbiotic bacteria isolated from other Lupinus species of the Iberian Peninsula were related to strains of the B. canariense or B. japonicum lineages and were separate from the L. mariae-josephi isolates. Phylogenetic analysis based on nodC symbiotic gene sequences showed that L. mariae-josephi bacteria also constituted a new symbiotic lineage distant from those previously defined in the genus Bradyrhizobium. In contrast, the nodC genes of isolates from other Lupinus spp. from the Iberian Peninsula were again clearly related to the B. canariense and B. japonicum bv. genistearum lineages. Speciation of L. mariae-josephi bradyrhizobia may result from the colonization of a singular habitat by their unique legume host

    Characterization of bacillus isolates of potato rhizosphere from Andean soils of Peru and their potential PGPR characteristics

    No full text
    A. Lopez-Lopez, M. A. Rogel-Hernandez, Monica Rosenblueth, and L. Raymundo are thanked for technical assistance. This research was supported by Consejo Nacional de Ciencia y Tecnologia (Concytec), Integrated Crop Management Division of International Potato Center (CIP), FDA biol-111/UNALM, DGAPA-PAPIIT IN200709 project, and Red Biofag-Cyted. We are grateful to Dr. Andreas Oswald (CIP) for his support in the collection of samples.Consejo Nacional de Ciencia, TecnologĂ­a e InnovaciĂłn TecnolĂłgica - Concyte

    Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (<em>Saccharum</em> sp.)

    No full text
    To identify active diazotrophs in sugarcane, 16S rRNA and nifH transcript analyses were applied. This should help to better understand the basis of the biological nitrogen fixation (BNF) activity of a high nitrogen fixing sugarcane variety. A field experiment using the sugarcane variety RB 867515 was conducted in Serop&eacute;dica, RJ, Brazil, receiving the following treatments: unfertilised and fertilised controls without inoculation, unfertilised with inoculation. The five-strain mixture developed by EMBRAPA-CNPAB was used as inoculum. Root and leaf sheath samples were harvested in the third year of cultivation to analyse the 16S rRNA and nifH transcript diversity. In addition to nifH expression from Gluconacetobacter spp. and Burkholderia spp., a wide diversity of nifH sequences from previously uncharacterised Ideonella/Herbaspirillum related phylotypes in sugarcane shoots as well as Bradyrhizobium sp. and Rhizobium sp. in roots was found. These results were confirmed using 16S cDNA analysis. From the inoculated bacteria, only nifH transcripts from G. diazotrophicus and B. tropica were detected in leaf sheaths and roots. Known as well as yet uncultivated diazotrophs were found active in sugarcane roots and stems using molecular analyses. Two strains of the inoculum mix were identified at the late summer harvest

    Rhizobium favelukesii sp nov., isolated from the root nodules of alfalfa (Medicago sativa L)

    No full text
    Torres Tejerizo GA, Antonio Rogel M, Ormeno-Orrillo E, et al. Rhizobium favelukesii sp nov., isolated from the root nodules of alfalfa (Medicago sativa L). INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY. 2016;66(11):4451-4457.Strains LPU83(T) and Or191 of the genus Rhizobium were isolated from the root nodules of alfalfa, grown in acid soils from Argentina and the USA. These two strains, which shared the same plasmid pattern, lipopolysaccharide profile, insertion-sequence fingerprint, 16S rRNA gene sequence and PCR-fingerprinting pattern, were different from reference strains representing species of the genus Rhizobium with validly published names. On the basis of previously reported data and from new DNA-DNA hybridization results, phenotypic characterization and phylogenetic analyses, strains LPU83(T) and Or191 can be considered to be representatives of a novel species of the genus Rhizobium, for which the name Rhizobium favelukesii sp. nov. is proposed. The type strain of this species is LPU83(T) (=CECT 9014(T) =LMG 29160(T)), for which an improved draft-genome sequence is available

    Table_3.PDF

    Get PDF
    Although the taxonomy of Burkholderia has been extensively scrutinized, significant uncertainty remains regarding the generic boundaries and composition of this large and heterogeneous taxon. Here we used the amino acid and nucleotide sequences of 106 conserved proteins from 92 species to infer robust maximum likelihood phylogenies with which to investigate the generic structure of Burkholderia sensu lato. These data unambiguously supported five distinct lineages, of which four correspond to Burkholderia sensu stricto and the newly introduced genera Paraburkholderia, Caballeronia, and Robbsia. The fifth lineage was represented by P. rhizoxinica. Based on these findings, we propose 13 new combinations for those species previously described as members of Burkholderia but that form part of Caballeronia. These findings also suggest revision of the taxonomic status of P. rhizoxinica as it is does not form part of any of the genera currently recognized in Burkholderia sensu lato. From a phylogenetic point of view, Burkholderia sensu stricto has a sister relationship with the Caballeronia+Paraburkholderia clade. Also, the lineages represented by P. rhizoxinica and R. andropogonis, respectively, emerged prior to the radiation of the Burkholderia sensu stricto+Caballeronia+Paraburkholderia clade. Our findings therefore constitute a solid framework, not only for supporting current and future taxonomic decisions, but also for studying the evolution of this assemblage of medically, industrially and agriculturally important species

    Phenotypic and genotypic characterisation of root nodule bacteria nodulating Millettia pinnata (L.) Panigrahi, a biodiesel tree

    No full text
    Aims. Milletia pinnata is a leguminous tropical tree that produces seed oil suitable for biodiesel and is targeted to be planted on marginal land associated with nitrogen poor soil. This study aimed to identify effective rhizobia species for M. pinnata. Methods. Soil samples were collected from M. pinnata grown in Kununurra, Australia. Rhizobia were trapped, characterised and sequenced for 16S rRNA, atpD, dnaK and recA genes. Results. Forty isolates tolerated pH 7 – 9, temperatures 29 – 37 °C, salinity below 1 % NaCl, and had optimal growth on mannitol, arabinose or glutamate as a single carbon source, a few grew on sucrose and none grew on lactose. Inoculation of isolates increased shoot dry weight of M. pinnata’s seedlings in nitrogen minus media. Slow-growing isolates were closely related to Bradyrhizobium yuanmingense, Bradyrhizobium sp. DOA10, Bradyrhizobium sp. ORS305 and B. liaoningense LMG 18230T. The fast-growing isolates related to Rhizobium sp. 8211, R. miluonense CCBAU 41251T, R miluonense CC-B-L1, Rhizobium sp. CCBAU 51330 and Rhizobium sp. 43015. Conclusions. Millettia pinnata was effectively nodulated by slow-growing isolates related to Bradyrhizobium yuanmingense, Bradyrhizobium sp. DOA10 Bradyrhizobium sp. ORS305, B. liaoningense LMG 18230T and fast-growing isolates related Rhizobium sp. 8211, R. miluonense, Rhizobium sp. CCBAU 51330 and Rhizobium sp. 43015
    corecore