96 research outputs found

    Bora-induced currents corresponding to different synoptic conditions above the Adriatic

    Get PDF
    International audienceThe Bora wind field is characterised by strong vorticity and divergence. Several numerical experiments, in which an oceanographic model was forced with northeasterly winds having climatological alongshore variability, were performed in order to study the influence of spatial variability in the bora wind field on the surface currents in the northern Adriatic. Numerical model results showed that during bora episodes with lower speeds and fast offshore decay surface currents along transect Rovinj - Po River are predominantly in the downwind direction. On the other hand, during bora episodes with strong intensity and slow offshore decay, a cyclonic gyre due to the pronounced bora alongshore variability is formed in the northernmost part of the Adriatic Sea and the studied transect is influenced by the counter currents. Moreover, bora having a high speed and a short offshore range produces the same effect in the eastern part of the Rovinj - Po River transect as low-speed bora characterised by slow offshore decay. Eulerian current measurements performed in the northern Adriatic during bora episodes characterised by different synoptic conditions supported the numerical model findings. Surface currents during the bora episode of 8-11 February 1984 were directed downwind, whereas during the episode of 12-19 February 1984 they were directed upwind. The first episode was characterised by a deep bora layer with cyclonic activity over the western Mediterranean and Genoa Bay, whereas the second one was accompanied by temperature inversion and a southwesterly tropospheric wind above a shallow bora layer. According to the hydraulic theory developed by Smith (1985), an observed descent of isentropes during the second bora episode led to the stronger acceleration in the bora layer and its larger offshore extent. Different offshore bora decays during studied events were confirmed by a comparison of the wind data originating from the meteorological stations positioned on the opposite Adriatic coasts

    Function and Distribution of Apolipoprotein A1 in The Artery Wall Are Markedly Distinct From Those in Plasma

    Get PDF
    Background—Prior studies show that apolipoprotein A1 (apoA1) recovered from human atherosclerotic lesions is highly oxidized. Ex vivo oxidation of apoA1 or high-density lipoprotein (HDL) cross-links apoA1 and impairs lipid binding, cholesterol efflux, and lecithin-cholesterol acyltransferase activities of the lipoprotein. Remarkably, no studies to date directly quantify either the function or HDL particle distribution of apoA1 recovered from the human artery wall. Methods and Results—A monoclonal antibody (10G1.5) was developed that equally recognizes lipid-free and HDL-associated apoA1 in both native and oxidized forms. Examination of homogenates of atherosclerotic plaque–laden aorta showed \u3e100-fold enrichment of apoA1 compared with normal aorta (P\u3c0.001). Surprisingly, buoyant density fractionation revealed that only a minority (\u3c3% of total) of apoA1 recovered from either lesions or normal aorta resides within an HDL-like particle (1.063≤d≤1.21). In contrast, the majority (\u3e90%) of apoA1 within aortic tissue (normal and lesions) was recovered within the lipoprotein-depleted fraction (d\u3e1.21). Moreover, both lesion and normal artery wall apoA1 are highly cross-linked (50% to 70% of total), and functional characterization of apoA1 quantitatively recovered from aorta with the use of monoclonal antibody 10G1.5 showed ≈80% lower cholesterol efflux activity and ≈90% lower lecithin-cholesterol acyltransferase activity relative to circulating apoA1. Conclusions—The function and distribution of apoA1 in human aorta are quite distinct from those found in plasma. The lipoprotein is markedly enriched within atherosclerotic plaque, predominantly lipid-poor, not associated with HDL, extensively oxidatively cross-linked, and functionally impaired

    Capacity of deep‐sea corals to obtain nutrition from cold seeps aligned with microbiome reorganization

    Get PDF
    Cold seeps in the deep sea harbor various animals that have adapted to utilize seepage chemicals with the aid of chemosynthetic microbes that serve as primary producers. Corals are among the animals that live near seep habitats and yet, there is a lack of evidence that corals gain benefits and/or incur costs from cold seeps. Here, we focused on Callogorgia delta and Paramuricea sp. type B3 that live near and far from visual signs of currently active seepage at five sites in the deep Gulf of Mexico. We tested whether these corals rely on chemosynthetically-derived food in seep habitats and how the proximity to cold seeps may influence; (i) coral colony traits (i.e., health status, growth rate, regrowth after sampling, and branch loss) and associated epifauna, (ii) associated microbiome, and (iii) host transcriptomes. Stable isotope data showed that many coral colonies utilized chemosynthetically derived food, but the feeding strategy differed by coral species. The microbiome composition of C. delta, unlike Paramuricea sp., varied significantly between seep and non-seep colonies and both coral species were associated with various sulfur-oxidizing bacteria (SUP05). Interestingly, the relative abundances of SUP05 varied among seep and non-seep colonies and were strongly correlated with carbon and nitrogen stable isotope values. In contrast, the proximity to cold seeps did not have a measurable effect on gene expression, colony traits, or associated epifauna in coral species. Our work provides the first evidence that some corals may gain benefits from living near cold seeps with apparently limited costs to the colonies. Cold seeps provide not only hard substrate but also food to cold-water corals. Furthermore, restructuring of the microbiome communities (particularly SUP05) is likely the key adaptive process to aid corals in utilizing seepage-derived carbon. This highlights that those deep-sea corals may upregulate particular microbial symbiont communities to cope with environmental gradients

    Function and Distribution of Apolipoprotein A1 in The Artery Wall Are Markedly Distinct From Those in Plasma

    Get PDF
    Background—Prior studies show that apolipoprotein A1 (apoA1) recovered from human atherosclerotic lesions is highly oxidized. Ex vivo oxidation of apoA1 or high-density lipoprotein (HDL) cross-links apoA1 and impairs lipid binding, cholesterol efflux, and lecithin-cholesterol acyltransferase activities of the lipoprotein. Remarkably, no studies to date directly quantify either the function or HDL particle distribution of apoA1 recovered from the human artery wall. Methods and Results—A monoclonal antibody (10G1.5) was developed that equally recognizes lipid-free and HDL-associated apoA1 in both native and oxidized forms. Examination of homogenates of atherosclerotic plaque–laden aorta showed \u3e100-fold enrichment of apoA1 compared with normal aorta (P\u3c0.001). Surprisingly, buoyant density fractionation revealed that only a minority (\u3c3% of total) of apoA1 recovered from either lesions or normal aorta resides within an HDL-like particle (1.063≤d≤1.21). In contrast, the majority (\u3e90%) of apoA1 within aortic tissue (normal and lesions) was recovered within the lipoprotein-depleted fraction (d\u3e1.21). Moreover, both lesion and normal artery wall apoA1 are highly cross-linked (50% to 70% of total), and functional characterization of apoA1 quantitatively recovered from aorta with the use of monoclonal antibody 10G1.5 showed ≈80% lower cholesterol efflux activity and ≈90% lower lecithin-cholesterol acyltransferase activity relative to circulating apoA1. Conclusions—The function and distribution of apoA1 in human aorta are quite distinct from those found in plasma. The lipoprotein is markedly enriched within atherosclerotic plaque, predominantly lipid-poor, not associated with HDL, extensively oxidatively cross-linked, and functionally impaired

    Macrophage-derived IL-1β and TNF-α regulate arginine metabolism in neuroblastoma

    Get PDF
    © 2018 American Association for Cancer Research. Neuroblastoma is the most common childhood solid tumor, yet the prognosis for high-risk disease remains poor. We demonstrate here that arginase 2 (ARG2) drives neuroblastoma cell proliferation via regulation of arginine metabolism. Targeting arginine metabolism, either by blocking cationic amino acid transporter 1 (CAT-1)-dependent arginine uptake in vitro or therapeutic depletion of arginine by pegylated recombinant arginase BCT-100, significantly delayed tumor development and prolonged murine survival. Tumor cells polarized infiltrating monocytes to an M1-macrophage phenotype, which released IL1b and TNFa in a RAC-alpha serine/threonine-protein kinase (AKT)-dependent manner. IL1b and TNFa established a feedback loop to upregulate ARG2 expression via p38 and extracellular regulated kinases 1/2 (ERK1/2) signaling in neuroblastoma and neural crest-derived cells. Proteomic analysis revealed that enrichment of IL1b and TNFa in stage IV human tumor microenvironments was associated with a worse prognosis. These data thus describe an immune-metabolic regulatory loop between tumor cells and infiltrating myeloid cells regulating ARG2, which can be clinically exploited

    Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

    Get PDF
    A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance p(T)(miss) in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the p(T)(miss) , the scalar sum of jet transverse momenta, and themT2 mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeVand neutralino masses up to 430 GeVare excluded. For amodel with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeVand neutralino masses up to 1150 GeVare excluded. These limits extend previous results.Peer reviewe

    Search for Evidence of the Type-III Seesaw Mechanism in Multilepton Final States in Proton-Proton Collisions at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore