247 research outputs found

    Tile Number and Space-Efficient Knot Mosaics

    Get PDF
    In this paper we introduce the concept of a space-efficient knot mosaic. That is, we seek to determine how to create knot mosaics using the least number of non-blank tiles necessary to depict the knot. This least number is called the tile number of the knot. We determine strict bounds for the tile number of a knot in terms of the mosaic number of the knot. In particular, if tt is the tile number of a prime knot with mosaic number mm, then 5m−8≤t≤m2−45m-8 \leq t \leq m^2-4 if mm is even and 5m−8≤t≤m2−85m-8 \leq t \leq m^2-8 if mm is odd. We also determine the tile number of several knots and provide space-efficient knot mosaics for each of them.Comment: The original version of this article was split into two articles during refereein

    Dynamic Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances

    Full text link
    We propose a new class of models specifically tailored for spatio-temporal data analysis. To this end, we generalize the spatial autoregressive model with autoregressive and heteroskedastic disturbances, i.e. SARAR(1,1), by exploiting the recent advancements in Score Driven (SD) models typically used in time series econometrics. In particular, we allow for time-varying spatial autoregressive coefficients as well as time-varying regressor coefficients and cross-sectional standard deviations. We report an extensive Monte Carlo simulation study in order to investigate the finite sample properties of the Maximum Likelihood estimator for the new class of models as well as its flexibility in explaining several dynamic spatial dependence processes. The new proposed class of models are found to be economically preferred by rational investors through an application in portfolio optimization.Comment: 33 pages, 5 figure

    Spatial Stability of Adult Aedes aegypti Populations

    Get PDF
    Vector control programs could be more efficient by identifying the location of highly productive sites of Aedes aegypti. This study explored if the number of female adults of Ae. aegypti in BG-Sentinel traps was clustered and if their spatial distribution changed in time in two neighborhoods in San Juan, Puerto Rico. Traps were uniformly distributed across each neighborhood (130 m from each other), and samples were taken every 3 weeks. Global and local spatial autocorrelations were explored. Spatial stability existed if the rank order of trap captures was kept in time. There was lack of global autocorrelation in both neighborhoods, precluding their stratification for control purposes. Hot and cold spots were identified, revealing the highly focal nature of Ae. aegypti. There was significant spatial stability throughout the study in both locations. The consistency in trap productivity in time could be used to increase the effectiveness of vector and dengue control programs

    Spatio-Temporal Diffusion Pattern and Hotspot Detection of Dengue in Chachoengsao Province, Thailand

    Get PDF
    In recent years, dengue has become a major international public health concern. In Thailand it is also an important concern as several dengue outbreaks were reported in last decade. This paper presents a GIS approach to analyze the spatial and temporal dynamics of dengue epidemics. The major objective of this study was to examine spatial diffusion patterns and hotspot identification for reported dengue cases. Geospatial diffusion pattern of the 2007 dengue outbreak was investigated. Map of daily cases was generated for the 153 days of the outbreak. Epidemiological data from Chachoengsao province, Thailand (reported dengue cases for the years 1999–2007) was used for this study. To analyze the dynamic space-time pattern of dengue outbreaks, all cases were positioned in space at a village level. After a general statistical analysis (by gender and age group), data was subsequently analyzed for temporal patterns and correlation with climatic data (especially rainfall), spatial patterns and cluster analysis, and spatio-temporal patterns of hotspots during epidemics. The results revealed spatial diffusion patterns during the years 1999–2007 representing spatially clustered patterns with significant differences by village. Villages on the urban fringe reported higher incidences. The space and time of the cases showed outbreak movement and spread patterns that could be related to entomologic and epidemiologic factors. The hotspots showed the spatial trend of dengue diffusion. This study presents useful information related to the dengue outbreak patterns in space and time and may help public health departments to plan strategies to control the spread of disease. The methodology is general for space-time analysis and can be applied for other infectious diseases as well

    ELSA: Entropy-based local indicator of spatial association

    Get PDF
    Research on spatial data analysis has developed a number of local indicators of spatial association (LISA), which allow exploration of local patterns in spatial data. These include local Moran’s I and local Geary’s c, as well as Gi and Gi* that can be used for continuous or interval variables only. Despite numerous situations where qualitative (nominal/categorical) variables are encountered, few attempts have been devoted to the development of methods to explore the local spatial pattern in categorical data. To our knowledge, there is no indicator of local spatial association that can be used for both continuous and categorical data at the same time. In this paper, we propose a new local indicator of spatial association, called the entropy-based local indicator of spatial association (ELSA), that can be used for both categorical and continuous spatial data. ELSA quantifies the degree of spatial association of a variable at each location relative to the same variable at the neighbouring locations. This indicator simultaneously incorporates both spatial and attribute aspects of spatial association into account. The values of ELSA vary between 0 and 1, which denote highest and lowest spatial association, respectively. We compare ELSA to existing statistics such as Local Moran’s I and test the power and size of the new statistic. We also introduce the "entrogram", a novel approach for exploring the global spatial structure within the entire area (like a variogram). This study showed that the ELSA is consistent and robust, and is therefore suitable for applications in a wide range of disciplines. The ELSA algorithm is made available as an R-package (elsa)

    Evaluation of Location-Specific Predictions by a Detailed Simulation Model of Aedes aegypti Populations

    Get PDF
    Skeeter Buster is a stochastic, spatially explicit simulation model of Aedes aegypti populations, designed to predict the outcome of vector population control methods. In this study, we apply the model to two specific locations, the cities of Iquitos, Peru, and Buenos Aires, Argentina. These two sites differ in the amount of field data that is available for location-specific customization. By comparing output from Skeeter Buster to field observations in these two cases we evaluate population dynamics predictions by Skeeter Buster with varying degrees of customization.Skeeter Buster was customized to the Iquitos location by simulating the layout of houses and the associated distribution of water-holding containers, based on extensive surveys of Ae. aegypti populations and larval habitats that have been conducted in Iquitos for over 10 years. The model is calibrated by adjusting the food input into various types of containers to match their observed pupal productivity in the field. We contrast the output of this customized model to the data collected from the natural population, comparing pupal numbers and spatial distribution of pupae in the population. Our results show that Skeeter Buster replicates specific population dynamics and spatial structure of Ae. aegypti in Iquitos. We then show how Skeeter Buster can be customized for Buenos Aires, where we only had Ae. aegypti abundance data that was averaged across all locations. In the Argentina case Skeeter Buster provides a satisfactory simulation of temporal population dynamics across seasons.This model can provide a faithful description of Ae. aegypti populations, through a process of location-specific customization that is contingent on the amount of data available from field collections. We discuss limitations presented by some specific components of the model such as the description of food dynamics and challenges that these limitations bring to model evaluation

    Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spatial analytical techniques and models are often used in epidemiology to identify spatial anomalies (hotspots) in disease regions. These analytical approaches can be used to not only identify the location of such hotspots, but also their spatial patterns.</p> <p>Methods</p> <p>In this study, we utilize spatial autocorrelation methodologies, including Global Moran's I and Local Getis-Ord statistics, to describe and map spatial clusters, and areas in which these are situated, for the 20 leading causes of death in Taiwan. In addition, we use the fit to a logistic regression model to test the characteristics of similarity and dissimilarity by gender.</p> <p>Results</p> <p>Gender is compared in efforts to formulate the common spatial risk. The mean found by local spatial autocorrelation analysis is utilized to identify spatial cluster patterns. There is naturally great interest in discovering the relationship between the leading causes of death and well-documented spatial risk factors. For example, in Taiwan, we found the geographical distribution of clusters where there is a prevalence of tuberculosis to closely correspond to the location of aboriginal townships.</p> <p>Conclusions</p> <p>Cluster mapping helps to clarify issues such as the spatial aspects of both internal and external correlations for leading health care events. This is of great aid in assessing spatial risk factors, which in turn facilitates the planning of the most advantageous types of health care policies and implementation of effective health care services.</p

    Understanding Uncertainties in Model-Based Predictions of Aedes aegypti Population Dynamics

    Get PDF
    Dengue is one of the most important insect-vectored human viral diseases. The principal vector is Aedes aegypti, a mosquito that lives in close association with humans. Currently, there is no effective vaccine available and the only means for limiting dengue outbreaks is vector control. To help design vector control strategies, spatial models of Ae. aegypti population dynamics have been developed. However, the usefulness of such models depends on the reliability of their predictions, which can be affected by different sources of uncertainty including uncertainty in the model parameter estimation, uncertainty in the model structure, measurement errors in the data fed into the model, individual variability, and stochasticity in the environment. This study quantifies uncertainties in the mosquito population dynamics predicted by Skeeter Buster, a spatial model of Ae. aegypti, for the city of Iquitos, Peru. The uncertainty quantification should enable us to better understand the reliability of model predictions, improve Skeeter Buster and other similar models by targeting those parameters with high uncertainty contributions for further empirical research, and thereby decrease uncertainty in model predictions
    • …
    corecore