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Mapping and exploring variation in post-fire vegetation recovery following
mixed severity wildfire using airborne LiDAR:

Abstract

There is a public perception that large high-severity wildfires decrease biodiversity and increase fire hazard by
homogenizing vegetation composition and increasing the cover of mid-story vegetation. But a growing
literature suggests that vegetation responses are nuanced. LIDAR technology provides a promising remote
sensing tool to test hypotheses about post-fire vegetation regrowth because vegetation cover can be quantified
within different height strata at fine scales over large areas. We assess the usefulness of airborne LiDAR data
for measuring post-fire mid-story vegetation regrowth over a range of spatial resolutions (10 x 10 m, 30 x 30
m, 50 x 50 m, 100 x 100 m cell size) and investigate the effect of fire severity on regrowth amount and spatial
pattern following a mixed severity wildfire in Warrumbungle National Park, Australia. We predicted that
recovery would be more vigorous in areas of high fire severity, because park managers observed dense post-fire
regrowth in these areas. Moderate to strong positive associations were observed between LiIDAR and field
surveys of mid-story vegetation cover between 0.5-3.0 m. Thus our LiDAR survey was an apt representation of
on-ground vegetation cover. LIDAR-derived mid-story vegetation cover was 22-40% lower in areas of low and
moderate than high fire severity. Linear mixed-effects models showed that fire severity was among the
strongest biophysical predictors of mid-story vegetation cover irrespective of spatial resolution. However
much of the variance associated with these models was unexplained, presumably because soil seed banks
varied at finer scales than our LiIDAR maps. Dense patches of mid-story vegetation regrowth were small
(median size 0.01 ha) and evenly distributed between areas of low, moderate and high fire severity,
demonstrating that high-severity fires do not homogenize vegetation cover. Our results are relevant for
ecosystem conservation and fire management because they: indicate that native vegetation are responsive and
resilient to high-severity fire, and show the usefulness of remote sensing tools such as LIDAR to monitor post-
fire vegetation recovery over large areas in situ.
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Mapping and exploring variation in post-ﬁre vegetation recovery

following mixed severity wildfire using airborne LiDAR

CHRISTOPHER E. GORDON,1’3 OweN F. PRICE,l AND ELizABETH M. TASKER?

Centre for Environmental Risk Management of Bushfires, University of Wollongong, Wollongong, 2522 New South Wales Australia

2Science Division, New South Wales Office of Environment and Heritage,
43 Bridge Street, Hurstville, 2220 New South Wales Australia

Abstract. There is a public perception that large high-severity wildfires decrease biodiver-
sity and increase fire hazard by homogenizing vegetation composition and increasing the cover
of mid-story vegetation. But a growing literature suggests that vegetation responses are
nuanced. LiDAR technology provides a promising remote sensing tool to test hypotheses
about post-fire vegetation regrowth because vegetation cover can be quantified within different
height strata at fine scales over large areas. We assess the usefulness of airborne LiDAR data
for measuring post-fire mid-story vegetation regrowth over a range of spatial resolutions
(10 x 10 m, 30 x 30 m, 50 x 50 m, 100 x 100 m cell size) and investigate the effect of fire
severity on regrowth amount and spatial pattern following a mixed severity wildfire in
Warrumbungle National Park, Australia. We predicted that recovery would be more vigorous
in areas of high fire severity, because park managers observed dense post-fire regrowth in these
areas. Moderate to strong positive associations were observed between LiDAR and field
surveys of mid-story vegetation cover between 0.5-3.0 m. Thus our LiDAR survey was an apt
representation of on-ground vegetation cover. LIDAR-derived mid-story vegetation cover was
22-40% lower in areas of low and moderate than high fire severity. Linear mixed-effects
models showed that fire severity was among the strongest biophysical predictors of mid-story
vegetation cover irrespective of spatial resolution. However much of the variance associated
with these models was unexplained, presumably because soil seed banks varied at finer scales
than our LiDAR maps. Dense patches of mid-story vegetation regrowth were small (median
size 0.01 ha) and evenly distributed between areas of low, moderate and high fire severity,
demonstrating that high-severity fires do not homogenize vegetation cover. Our results are
relevant for ecosystem conservation and fire management because they: indicate that native
vegetation are responsive and resilient to high-severity fire, and show the usefulness of remote
sensing tools such as LIDAR to monitor post-fire vegetation recovery over large areas in situ.
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INTRODUCTION

The dramatic consumption and blackening of vegeta-
tion by wildfire leads to a public perception that fire is
bad for the environment and biodiversity. However, eco-
logical research has revealed a much more nuanced situa-
tion, with most species displaying a range of adaptations
that enable them to persist in fire-prone environments
(i.e., fire stimulates germination and recruitment; Clarke
et al. 2015). Also, it is becoming clear that the fire regime
(the long-term pattern of fire) is more important than the
impact of individual fires (Gill 1975) for the long-term
persistence of populations. In recent years, research focus
has turned to fire severity because there is growing evi-
dence for considerable variation in the ecological effects
among and even within fires. Fire severity is a measure of
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the biological impact of a fire, usually the amount of veg-
etation consumed (Keeley 2009). It can be measured in
the field or from remote sensing using multi-spectral
indices that describe blackening (Hammill and Bradstock
2006). High-severity fires remove more vegetation so they
might be expected to have a higher biological impact
(Bradstock 2009, Adams and Attiwill 2011). However,
there is increasing evidence that some floristic elements
are favored by high-severity fires because these fires are
required to trigger seed germination (Ooi et al. 2006,
Liyanage and Ooi 2015). Also, studies have found that
high-severity fires often have minimal effects on vegeta-
tion diversity, including in North American pine forests
and west coast shrublands (Turner et al. 1999, Purdon
et al. 2004, Keeley et al. 2008, Fornwalt and Kaufmann
2014) and Australian eucalypt forests (Bradstock 2009,
Knox and Clarke 2012, Camac et al. 2013, Clarke et al.
2014).

In January 2013, a wildfire burned ~90% of the
23,000-ha Warrumbungle National Park in central-
western New South Wales, Australia, causing a range of
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significant impacts including a large soil erosion event,
significant reduction in koala (Phascolarctos cinereus)
and brush-tailed rock-wallaby (Petrogale penicillata)
populations and the destruction of 50 houses near the
park boundary (Burned Area Assessment Team 2013;
unpublished government report). Much of the area was
severely burned with total crown consumption, but there
were areas of much milder severity that acted as refuges
for the biota. Park managers observed widespread vege-
tation regrowth following the fire and wanted to know
the pattern of post-fire recovery in terms of biodiversity
value and fuel hazard for future fire regime management.
Here we present a quantification of the spatial pattern
of mid-story vegetation regrowth (defined as all vegeta-
tion 0.5-3.0 m from the ground) following the fire and
statistical modelling of potential reasons why the
response varied spatially. This study was used to test two
opposing hypotheses about fire severity and vegetation
response: (1) high-severity fire causes high biological
impact and hence slow recovery (i.e., the public’s percep-
tion of vegetation response to severe wildfire) or (2)
high-severity fire creates the conditions for strong recov-
ery (i.e., fire stimulates germination and recruitment;
QOoi et al. 2006, Liyanage and Ooi 2015). Gordon et al.
(2017) found widespread vegetation regrowth following
the fire (particularly of Acacia shrubs, which have long-
lived, fire-responsive, soil seed banks), including in areas
burned at high severity; Acacia cover was 4.3 times
greater 2 yr after than before the fire, cover was posi-
tively correlated with fire severity and the mean maxi-
mum height of recruiting seedlings was 2.4 m. Therefore
our main hypothesis was that recovery would be more
vigorous in areas of high fire severity. Moreover, we
expected patches of vigorous regrowth to be large
(several hectares), reflecting the size of the high-severity
patches (85% of the high-severity fire occurred within
discrete patches >10 ha in area). Such large areas of
dense regrowth could pose a significant fire hazard in
the park, which was something that park managers were
particularly concerned about both in the short and long
term. As well as the ecological aspects, this study tests
the use of airborne LiDAR technology to map post-fire
vegetation recovery, a technique that could be used rou-
tinely if it is found to be accurate and precise. While air-
borne LiDAR data has been applied to measure many
aspects of vegetation structure (especially in forests;
Gonzalez-Olabarria et al. 2012, Levick et al. 2012,
Brosofske et al. 2014, Harpold et al. 2015), its use to
map post-fire vegetation recovery across large areas,
especially in Australia, is rare (Kane et al. 2013, 2014).

METHODS

Study area

The study was conducted in Warrumbungle National
Park (31.29° S, 149.01° E) ~10 km west of Coon-
abarabran in central-western New South Wales, Australia
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(Fig. 1). The park is typified by a topographically diverse
landscape with steep volcanic mountains rising to 1,206 m
above sea level and sandstone river flats laying 400-500 m
above sea level. Average annual rainfall at Coon-
abarabran, the closest long-term weather station to the
park, is 750.7 mm (134 yr of data; Australian Bureau of
Meteorology). Rainfall decreases east-west due to oro-
graphic effects of the mountain range. Prior to the 2013
wildfire, most of the park (~70%) had been unburned since
at least 1968. The vegetation of the park is dominated by
woodland and open forests with trees comprising white
box (Eucalyptus albens), yellow box (E. melliodora), iron
bark (E. crebra), red scribbly bark (E. macrorhyncha),
rough barked apple (Angophora floribunda), white cyprus
(Callitris glaucophylla), black cyprus (C. endlicheri), and
bloodwood (Corymbia dolichocarpa). Minor areas of the
park are dominated by Motherumbah shrublands (A4cacia
cheelii; 10% area) or grasslands (Austrostipa spp., Echium
plantagineum, or Microlaena stipoides; 3% area).

The 2013 wildfire ignited from an unknown cause on the
evening of 12 January. It escaped containment lines early
on 13 January and spread 21 km to the east under extreme
fire weather (39°C temperatures, <20% humidity, wind
speeds of ~40 km/h, Forest Fire Danger Index of 60; data
from Siding Spring Observatory [Australian Bureau of
Meteorology 2016]) until the night when conditions eased.
It continued to burn for several more days, mainly spread-
ing south. The final area burned by the fire was 45,000 ha,
including ~90% of the park (Fig. 1). The percentage of
area burned by low- (canopy unburned, understory
scorched or consumed), moderate- (canopy scorched,
understory consumed), and high- (all canopy consumed)
severity fire was 21%, 42%, and 37%, respectively (Price
and Storey 2015; unpublished government report).

LiDAR data

The New South Wales Department of Land and Prop-
erty Information conducted a LiDAR survey of Warrum-
bungle National Park between 3 and 11 September 2014,
~20 months after the wildfire. LIDAR data was collected
using a Leica ALS50-II airborne sensor (Leica Geosys-
tems, Heerbrugg, Switzerland) with an average flight
height of 2,801 m, a swath width of 737 m, and a scan
angle of —17° to 22°. Data consisted of 100 2 x 2 km
Las file “tiles” representing the first four returns of the
LiDAR laser beam. The average point cloud density was
1.01 points/m* and the maximum point cloud density was
1.59 points/m?, respectively. The LiDAR vendor reported
the vertical and horizontal accuracy of the LiDAR data
as 30 and 80 cm, respectively.

LiDAR processing

The percentage of mid-story vegetation cover between
0.5-3.0 m was assessed at four spatial resolutions
(10 x 10 m, 30 x 30 m, 50 x 50 m, 100 x 100 m) in
areas burned by the 2013 wildfire. We chose to assess
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Map of Warrumbungle National Park showing fire severity during the 2013 wildfire and the location of 40 field sites

(black circles) used to validate our LIDAR survey. The insert map shows the location of the park (gray) in Australia.

mid-story vegetation cover within this height strata
because (1) field surveys showed vegetation regrowth typi-
cally occurred <3 m from the ground (an average maxi-
mum regrowth height of 2.43 + 0.14 m [mean + SE] was
observed at 60 field sites surveyed ~2 yr after the wildfire;
unpublished data), and (2) LIDAR ground models are gen-
erally accurate to ~+0.25 m and trying to measure vegeta-
tion too closely to this error range can result in vegetation
measurement errors (Dubayah and Drake 2000, Mitchard
et al. 2012). The four spatial resolutions were chosen to
investigate scale-dependent relationships between mid-
story vegetation cover and important predictors of cover
(see Predictors of mid-story vegetation cover section).
LiDAR files were converted to height above the
ground and LiDAR points that were classified as build-
ings or located in rocky outcrop areas were excluded
using the vendor-identified buildings classification of the
LiDAR data and a rock mask raster map created as part

of the fire severity mapping (see Predictors of mid-story
vegetation cover section). The number of LiDAR point
returns in each cell were then summed between 0.5—
3.0 m (i.e.,, mid-story vegetation) and 0-3 m (i.e., the
entire mid-story vegetation canopy including ground
points), and percentage of mid-story vegetation cover
was calculated as all 0.5-3.0 m point returns divided by
0-3 m point returns multiplied by 100. A technical
description of the LIDAR survey method is described in
Appendix S1: Box S1.

Field validation of the LiDAR survey

A point-intersect method was used to gather field
cover data to validate LiDAR mid-story vegetation
cover at 40 20 x 20 m area sites (Fig. 1). To ensure that
field sites sampled a range of vegetation densities, one
low- and one high-density vegetation site (densities
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assessed visually) was sampled 40-200 m apart at 20
locations. At each site, a 20 x 20 m plot was marked
using measuring tapes. A Bosch 250 VF professional
rangefinder (Bosch, Stuttgart, Germany) placed at the
end of a 0.5 m tripod with the laser pointing toward the
sky was then used to measure the distance to overlying
vegetation at 36 points spaced at 4-m intervals. Vegeta-
tion cover was then calculated as the percentage of the
36 points intersecting overlying vegetation between 0.5—
3.0 m above the ground. Pilot study work showed that
36 points reliably estimated mid-story vegetation cover
(unpublished data). The location of the center of each site
was measured using a recreational grade GPS (Garmin
GPS 60, Garmin Ltd., Schaffhausen, Switzerland). The
field survey was conducted in August 2015, 11 months
after the LIDAR survey.

Linear models were used to test the precision and
accuracy of LIDAR mid-story vegetation cover using the
10 x 10 m and 30 x 30 m cell resolution maps; these
spatial resolutions most closely resembled the size of the
field plot. The recreational grade GPS used to mark field
sites reported a spatial error of up to 10 m. To explore if
this error influenced our result, we offset the location of
the field sites by 5 and 10 m to the east, then reassessed
associations between field and LiDAR cover using sepa-
rate linear models.

Predictors of mid-story vegetation cover

A random sample of 3,008 cells sampled within the
perimeter of the 2013 wildfire was used to test the rela-
tive effects of 12 predictor variables on mid-story vegeta-
tion cover between 0.5-3.0 m. Cells were separated by at
least 250 m. Predictor variables were chosen based on a
priori knowledge of processes thought to influence vege-
tation regrowth following fire (Table 1).

Topography can affect vegetation recovery in a variety
of ways, including influencing the microclimate, erosion,
soil depth and moisture content, and sun exposure. A 5-
m resolution Digital Elevation Model (DEM) obtained
from the New South Wales Office of Environment and
Heritage was used to calculate elevation, slope, aspect,
and solar radiation on the 2013 summer and winter sol-
stice days. The solar radiation metric used the hemi-
spherical view-shed algorithm (Rich et al. 1994, Fu and
Rich 2002) to measure the amount of solar insolation
(W-h~'m~2) on summer and winter solstice days during
2013, given elevation, slope, aspect, and latitude inputs.
Solar radiation was measured on solstice days to maxi-
mize the difference in solar radiation between summer
and winter periods.

The Compound Topographic Index (CTI) is a steady-
state wetness index that measures the cumulative
upstream/upslope contribution of cells to other cells.
High CTI values are associated with flat low-lying areas,
whereas low CTI values are associated with steep
upslope areas. CTI is highly correlated with several soil
attributes important for vegetation growth such as soil
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depth, silt percentage, organic matter content, and phos-
phorous (Moore et al. 1993, Gessler et al. 1995). Eq. 1
shows that CTI is proportional to slope, upstream/up-
slope contribution, and orthogonal flow direction

(flow accumulation(flow index
CTI= (6 each cell) + 1) x pixel area(m) (1
TAN(slope(radiuns))

Fire severity and time-since-fire (here defined as the
interval between the 2013 wildfire and the previous fire)
can impact post-fire vegetation recovery by reducing or
promoting the abundance of some but not other species
(Bradstock et al. 2002). A fire-severity map for the 2013
wildfire was created (Price and Storey 2015; unpublished
government report) using the relativized differenced Nor-
malized Difference Vegetation Index (NDVI; Miller and
Thode 2007) from two 5-m resolution Rapideye satellite
images obtained before and after the fire (29 December
2012 and 24 January 2013). NDVI measures the “green-
ness” of vegetation, and the comparison of before and
after images essentially measures the loss of greenness or
the degree of blackening. The relativizing weights the
severity values by the pre-fire NDVI to correct bias
toward less vegetated areas. Areas affected by cloud in
either image were excluded, as was bare rock (as identified
by image classification of 50-cm resolution pre-fire aerial
photography). The values were converted into a severity
classification (0, unburned; 1, understorey burned but
not the crown canopy; 2, crown scorch; 3, crown con-
sumption), using 28 ground points (Burned Area Assess-
ment Team 2013; unpublished government report) and 54
points identified from oblique aerial photography (with
94% accuracy). Remote sensed severity mapping can dis-
tinguish crown and understorey consumption in Eucalypt
forests because the tree canopy is usually <30% (Hammill
and Bradstock 2006). In Warrumbungle National Park,
our LiDAR data suggested that mean canopy cover
between 3 and 20 m was 44% (this value was calculated
from a sample of 50 cells unburned by the 2013 wildfire
using the upper canopy cover map described below; see
Predictors of mid-story vegetation cover section).

Time-since-fire was sampled at a 50-m cell resolution
using a fire history map provided by the New South
Wales Office of Environment and Heritage. This map
was created using a combination of satellite imagery,
aerial photographs, and field observations.

To test whether the pre-fire biota influenced vegeta-
tion recovery, a 1:50,000 scale vegetation community
map was obtained from the New South Wales Office of
Environment and Heritage (Hunter 2008; unpublished
government report). The vegetation map showed nine
dominant vegetation communities (Appendix Sl:
Table S1). Following preliminary analysis of our LIDAR
cover maps, we simplified these into four classes domi-
nated by Eucalyptus spp. (vegetation communities CI1,
C3, C4, C7), Acacia spp. (vegetation communities C8
and C9), Callitris spp. (vegetation community C2), and
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grasslands (vegetation communities C5 and C6; see
Appendix S1: Table S1 for a description of the vegeta-
tion community names used here).

To test whether underlying geology and hence produc-
tivity influenced vegetation recovery, a 1:250,000 scale
geology map was obtained from the New South Wales
Office of Environment and Heritage. Four geology
classes were present at our subsample of 3,008 cells:
undifferentiated basalts, Pilliga sandstones, Keelindi
beds sandstones, and Purlawaugh Foundation sand-
stones. Following preliminary analysis, we grouped all
three sandstone classes into one, resulting in a simple
sandstone/basalt geology classification.

There is a considerable east-west rainfall gradient
across the park, due to orographic effects of the moun-
tains intercepting rainfall, which predominantly arrives
with easterly winds. There is no actual data on rainfall
patterns across the park, so we used geographic easting
as a surrogate for this gradient.

Overstory vegetation (i.e., upper canopy cover) can
potentially impact mid-story vegetation regrowth via
competition or facilitation effects (Bazzaz 1996). The
LiDAR survey was used to assess upper canopy cover,
which is here defined as all vegetation falling between 3
and 20 m from the ground. The LiDAR data was
processed using the methods described in the LiDAR pro-
cessing section and Appendix S1: Box S1. Cover was cal-
culated as the sum of all point returns between 3 and
20 m divided by the sum of all point returns between
0-20 m multiplied by 100.

Linear mixed-effects models were used to identify
which of the 12 predictor variables best explained mid-
story vegetation cover at each spatial resolution. Continu-
ous predictor variables were sampled at the same spatial
resolution as mid-story vegetation cover for each analysis
and categorical predictor variables and easting were sam-
pled at the central point of each replicate cell. Fire sever-
ity was categorized at each spatial resolution by summing
all 5-m resolution low-, moderate-, and high-severity cells
falling within a larger cell size and using the most fre-
quently observed category. Where tied values occurred,
the higher severity category was used. Mid-story vegeta-
tion cover was log + 1 transformed prior to analysis to
normalize data. Although our sample points were evenly
distributed throughout the park, it was possible that spa-
tial location may have influenced trends in mid-story veg-
etation cover. For example, high-severity fire may be an
important predictor of mid-story vegetation cover, how-
ever high-severity fire may have been limited to one spa-
tial area. To account for spatial confounding in our
models, drainage watershed (i.e., drainage basin) was
included as a random factor in all linear mixed-effects
models. A drainage watershed map created in ArcMAP
10.2 using the DEM as an input identified 34 discrete
watersheds within and surrounding the park (watershed
area 12.21 =+ 1.52 km? [mean =+ SE)).

Prior to model fitting, Pearson’s correlation tests were
used to identify collinearity between continuous
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predictor variables (collinearity of predictor variables
can lead to irregular behavior of mixed-effects models;
Zuur et al. 2009). If any two predictor variables had a
correlation coefficient > 0.7, they were deemed to be
proxies of one another and one was removed. All possi-
ble combinations of predictor variables were then com-
puted using the dredge function in the MuMIN package
(Barton 2011) in the program R (R Development Core
Team 2013). Models were ranked based on Akaike
Information Criterion (AIC; the best model was that
with the lowest AIC value) and an Akaike weight (w;
the likelihood that a model is true given a subset of com-
peting models) was calculated. A best subset of models
was then determined by summing w; values, starting with
the model with the highest w; and continuing in decreas-
ing order until the Xw; values reached 0.95 (Burnham
and Anderson 2003). Within this subset of models, the
relative importance of each predictor variable was
assessed by summing w; values for all models within
which a predictor variable occurred (Burnham and
Anderson 2003). A relative importance value of 1
implies that a predictor variable is present in all models
and a value of 0 implies that a predictor variable is pre-
sent in no models. Marginal (inclusive of fixed effects
only) and condition (inclusive of fixed and random
effects) R* values were calculated and used to determine
the goodness-of-fit for all models using the method
described in Nakagawa and Schielzeth (2013).

Spatial clumping of mid-story vegetation patches

To compare the size and spatial clumping of vegeta-
tion recovery between areas of low-, moderate-, and
high-fire severities, we created maps of dense vegetation
patches using the 0.5-3.0 m LiDAR mid-story vegeta-
tion cover map sampled at a 10 x 10 m cell resolution.
We defined “dense” vegetation to be any 10 x 10 m
cell above the 66th percentile value of LiDAR cover
cells (i.e., >20%). We aggregated all dense cover cells
sharing a straight edge into discrete patches and calcu-
lated the area (ha) of each discrete patch. Finally, we
extracted all patches in low, moderate, and high fire
severity areas and constructed plots of cumulative
patch occurrence against patch area. Kolmogorov-Smir-
nov tests were used to compare the distribution of
cumulative patch area between low, moderate, and high
fire severity areas.

The Getis-Ord test statistic was used to test for spatial
clustering of dense mid-story vegetation cover patches in
ArcGIS 10.2 (Getis and Ord 1992, Ord and Getis 1995).
The Getis-Ord test statistic uses a neighborhood distance
matrix (500 m for our analysis) to identify “hotspots,”
where large area patches are grouped around other large
area patches, and “coldspots,” where small area patches
are grouped around other small area patches. The statisti-
cal significance of hotspot and coldspot patch clumping
was assessed using z and P values, and the degree of
statistical strength was inferred by setting o at 0.1 (90%
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confidence level), 0.05 (95% confidence level), and 0.01
(99% confidence level). A non-significant result in the
analysis is indicative of no spatial clustering.

REsuULTS

LiDAR cover maps

The LiDAR surveys showed a complex pattern of
mid-story vegetation cover across the park, including
many areas with <5% cover (e.g., 45% of cells for the
10 x 10 m resolution map) and few areas with cover
>30% (e.g., 4% of cells for the 10 x 10 m resolution
map; Fig. 2 and Appendix S1: Fig. S1). Moderate to
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strong positive correlations (R = 0.53-0.87) were
observed between the LIDAR maps sampled at different
spatial resolution (Appendix S1: Table S2).

Field validation of the LiDAR survey

Moderately strong positive correlations were observed
between field surveyed mid-story vegetation cover and
LiDAR surveyed cover at the 10-m (R*> = 0.48) and 30-
m (R? = 0.56) cell resolutions (Fig. 3a, d). Offsetting the
field survey points by 5 and 10 m resulted in a small
reduction in R* values (Fig. 3). Both the 10- and 30-m
resolution LiDAR survey’s underestimated mid-story
vegetation cover relative to the field survey.

Mid-story cover 10 x 10 m (%)

High : 100

Low: 0

0 lkm

FiG. 2. An example of a LIDAR map showing the percentage of mid-story vegetation cover between 0.5-3.0 m in Warrumbun-
gle National Park. Data was sampled at a 10 x 10 m cell resolution. (a) and (b) show magnified areas of high mid-story vegetation
cover and (c) shows a magnified area of low mid-story vegetation cover. The black line shows the boundary of the park.
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100 A a) 10 m resolution: no jitter

R=0.69, R?=0.48, y=0.67x-6.21

1 d) 30 m resolution: no jitter
R=0.75,R?=0.56, y=0.39x - 2.93

100 A b) 10 m resolution: 5 m jitter

Lidar vegetation cover (%)

R=0.69,R2=0.48, y=0.56x-5.48

1 e) 30 m resolution: 5 m jitter
R=0.74,R?2=0.55, y=0.38x-2.44

100 A c) 10 m resolution: 10 m jitter

R=0.64, R?=0.41, y=0.45x - 2.70

4 f) 30 m resolution: 10 m jitter
R=0.74,R?=0.55, y=0.38x - 1.96

0 25 50 75

100 O 25 50 75

100

Field vegetation cover (%)

Fic. 3.

Scatter plots showing associations between LiDAR and field surveys mid-story vegetation cover (0.5-3.0 m) at 40 sites

burned by the 2013 wildfire. LIDAR cover was assessed at a 10 m (a—c) and 30 m (d—f) cell resolution and field survey points were
sampled at the GPS location (a and d; no jitter), 5 m east of the GPS location (b and e; 5 m jitter) and 10 m east of the GPS loca-
tion (c and f; 10 m jitter). Results of linear models between LiDAR and field surveyed vegetation cover are shown for each plot. R
represents the Pearson’s correlation coefficient, R? represents the coefficient of determination and the form of the each linear model

is also shown.

Important predictors of mid-story vegetation cover

Fire severity was among the most important predictor
of mid-story vegetation cover at each of the four spatial
resolutions (Table 2, Fig. 4). At the finest spatial resolu-
tion (10 x 10 m), mid-story vegetation cover was 40%
greater in areas of high than moderate fire severity, 31%
greater in areas of high than low fire severity, and 7%
greater in areas of low than moderate fire severity
(Fig. 4). At the coarsest spatial resolution (100 x
100 m), mid-story vegetation cover was 31% greater in
areas of high than moderate fire severity, 22% greater in
areas of high than low fire severity, and 12% greater in
area of low than moderate fire severity (Fig. 4).

Low to moderate levels of collinearity were observed
between most continuous predictor variables in our lin-
ear mixed-effects models (Appendix S1: Table S3). How-
ever strong correlations were observed between slope
and solar radiation on the 2013 summer solstice day at
all spatial resolutions (10 x 10 m, R = —0.92; 30 x
30 m, 50 x 50 m, and 100 x 100 m, R = —0.93) and
slope and the compound topographic index at the 50 x
50m (R=-0.75) and 100 x 100 m resolutions
(R = —0.82). Because of these strong correlations, slope
was excluded from all models.

A low level of model uncertainty was present at each
spatial resolution, with three to eight models falling
within the 95% confidence sets (Table 2). Elevation
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Mid-story vegetation cover (%)
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Fic. 4. Mid-story vegetation cover between 0.5-3.0 m
(mean + SE) in areas of low, moderate, and high fire severity.
Mid-story vegetation cover was assessed at four spatial resolu-
tions: 10 x 10 m, 30 x 30 m, 50 x 50 m, and 100 x 100 m
cell size.

(positive), fire severity (cover greater at high >low >mod-
erate severities), solar radiation on the summer solstice
day (positive), and upper canopy cover (negative) were
among the strongest predictors of mid-story vegetation
cover at all spatial resolutions (w; = 0.9-1.0); vegetation
type (cover greater at Acacia > Callitris > Eucalyptus >
grassland areas) was among the strongest predictors at
the 30 x 30 m, 50 x 50 m, and 100 x 100 m resolu-
tions; geology (cover greater at volcanic > sedimentary
areas) was among the strong predictor at the 50 x 50 m
resolution; and time-since-fire (positive) was among the
strongest predictors at the 50 x 50 m and 100 x 100 m
resolutions (Table 3). Aspect and solar radiation on the
winter solstice day were poor predictors of mid-story
vegetation cover at all spatial resolutions and the com-
pound topographic index and easting were poor predic-
tors of mid-story vegetation cover at most spatial
resolutions (Tables 2, 3).

Marginal and conditional R* values were higher at
the coarser than finer spatial resolution, however, they
never exceeded 0.27 and 0.45, respectively (Table 2).
This suggests that the 12 predictor variables and the
watershed random factor explained <45% of the vari-
ance in mid-story vegetation cover, irrespective of spa-
tial resolution.
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Spatial clumping of dense mid-story vegetation

The distribution of dense patch areas were statistically
different between areas of low and moderate (D = 0.0.064,
P < 0.0001), low and high (D = 0.029, P < 0.0001), and
moderate and high fire severity (D = 0.035, P < 0.0001;
Fig. 5). A 48.93% portion of dense patches in areas of low
fire severity were <0.05 ha in size, 8.62% of dense patches
were >1 ha, and the largest dense patch was 13.3 ha;
65.32% of dense patches in areas of moderate fire severity
were <0.05 ha in size, 1.48% of dense patches were >1 ha,
and the largest dense patch was 2.77 ha; 47.42% of dense
patches in areas of high fire severity were <0.05 ha in size,
12.94% of dense patches were >1 ha in size, and the largest
dense patch was 10.89 ha.

The Getis-Ord test statistic showed that 87% of poly-
gons (size 0.02 + 0.06 ha [mean + SD]) were randomly
distributed throughout the 2013 wildfire burn area; i.e.,
a non-significant Getis-Ord statistic (Fig. 6). One per-
cent of small polygons were clumped around other small
polygons at the 90% confidence level (0.015 £+ 0.020 ha)
and none were clumped around other small polygons at
the 95% or 99% confidence levels (Fig. 6). Two percent,
3%, and 7% of large polygons were clumped around
other large polygons at the 90% (0.043 4+ 0.159 ha), 95%
(0.045 4+ 0.176 ha), and 99% (0.062 + 0.398 ha) confi-
dence levels, respectively (Fig. 6).

Discussion

Spatial pattern of mid-story regrowth

Mid-story vegetation recovery was vigorous across
widespread areas of the fire including in areas burned
with differing severity. The density of regrowth was
higher in severely than mildly burned areas irrespective
of the spatial resolution of the LiDAR vegetation map.
Therefore our main hypothesis was accepted: high-sever-
ity fire creates the conditions for strong vegetation
recovery. A concurrent study by Gordon et al. (2017)
showed that most of the vegetation regrowth was from
Acacia species with a long-lived fire responsive soil seed
bank, and that Acacia regrowth amount was positively
associated with fire severities. Given this, and the fact
that many Acacia species have physically dormant seeds
that require severe fire to cue germination (Liyanage and
Ooi 2015), it is likely that seed dormancy and soil seed
bank longevity were important processes facilitating the
strong post-fire response reported here, especially in
areas burned at high fire severities. Although removal of
soil inhibitory effects may also have played some role
(Purdie 1977), and more importantly the strong effect of
overstory canopy cover in our statistical models (the loss
of which is directly related to fire severity) suggests that
competition for resources (lower where overstory cover
is low) was at least as important a biological driver as
fire stimulation of seed germination. Murphy et al.
(2015) similarly suggest that competition for resources
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Coefficient estimates (CE) and relative contribution scores (R1) for predictor variables falling within the 95% confidence

set (Zw; = 0.95) of linear mixed-effects models describing spatial trends in mid-story vegetation cover at four spatial resolutions:

10 x 10 m, 30 x 30 m, 50 x 50 m, and 100 x 100 m.

10 x 10 m 30 x 30 m 50 x 50 m 100 x 100 m

Variable CE RI CE RI CE RI CE RI
CTI — — 0.0170 0.46 0.0312 0.67 0.0032 0.09
Easting — — — — — — <—0.0001 0.76
Elevation 0.0014 1 0.0010 1 0.0011 1 0.0012 1
Fire severity

Low —0.4214 1 —0.2626 1 —0.1708 1 —0.1208 1

Moderate —0.3043 — —0.2132 — —0.2104 — —0.1798 —

High ref — ref — ref — ref
Geology

Sedimentary ref — ref — ref — ref —

Volcanic 0.0014 0.05 0.0144 0.18 0.1102 0.93 0.0609 0.66
SR: summer —0.0005 1 —0.0004 1 —0.0005 1 —0.0005 1
Time-since-fire 0.0016 0.35 0.0011 0.33 0.0037 1 0.0031 1
Upper canopy cover —0.0053 0.91 —0.0081 1 —0.0123 1 —0.0127 1
Vegetation

Acacia 0.0702 0.19 0.3977 1 0.4320 — 0.3426 —

Callitrus 0.0747 — 0.4587 — 0.3858 — 0.3306 —

Eucalyptus 0.0726 — 0.4116 — 0.3489 — 0.2441 —

Grassland ref — ref — ref — ref —

Notes: The abbreviation ref represents the reference group for categorical variables —shows the variables not included in the 95%
confidence set. CTI, compound topographic index; SR, solar radiation

has a stronger influence than fire itself in structuring
eucalypt communities.

Although fire severity was an important predictor of
mid-story vegetation in our statistical models, its effect
was not as great as what could have been expected given
the extent and severity of the fire; mid-story cover was
31% and 40% higher in areas burned at high rather than
low or moderate severities, respectively. Our LiDAR
survey was conducted ~20 months after the fire, and
given this, it is probable that much of the vegetation
regrowth was still occurring at the time of the LiDAR
survey. Gordon et al.’s (2017) field survey of the park,
which was conducted 27-32 months after the 2013
wildfire, showed that mid-story cover was ~70% and
40% higher in areas burned by high rather than low or
moderate severity fire, respectively. Collectively with
our study, this result suggest that the effects of fire
severity on vegetation regrowth increase with time-
since-fire till at least and potentially beyond 32 months
post-fire.

Contrary to our initial prediction, mid-story vegeta-
tion cover was lowest at the moderate- (and not low-)
fire severity category (Fig. 4) and most dense vegetation
patches were small (0.01 ha) in these areas (Figs. 5, 6).
By definition, low-severity fires consume some but not
all mid-story vegetation whereas moderate-severity fires
consume or scorch the entire mid-story vegetation stra-
tum (Keeley 2009). Given this, more unburned vegeta-
tion would have remained in areas of low- rather than
moderate-severity fire, and this would have influenced
our LiDAR cover values.

Although we observed a significant effect of fire severity
on vegetation regrowth amount, other biophysical factors
were equally important and the majority of variance in the
linear mixed-effects models was unexplained, especially at
the smaller spatial resolution (10 x 10 m). Further to
this, the regrowth of mid-story vegetation was patchy and
most patches were much smaller than patches of similar
fire severity. These factors make it difficult to explain the
spatial pattern of recovery. Why should one plot have
experienced vigorous regrowth while a second with a simi-
lar environment and only 10 m from the first have rela-
tively weak regrowth? To some degree, this is likely to be
because the content of the seed bank varies according to
the past fire regimes and edaphic characteristics of the site
(Tozer and Bradstock 2003), in ways that are not corre-
lated by the environmental variables we explored. For
example, vigorous growth of the common shrub Acacia
penninervis at one site may be because the sequence of pre-
vious fires lead to a particularly large seed bank, while at
another site either the past fires or site factors, such as soil
depth or micro-scale nutrient levels, lead to a smaller seed
bank or lower growth following the 2013 wildfire. The seed
bank is not well described by vegetation mapping because
mapping is strongly based on the dominant overstory spe-
cies, and to a lesser extent on the floristic composition of
species present above-ground at the time of mapping.
Depending on the post-fire age of the sites at the time of
mapping, a significant number of species may not be pre-
sent above ground or only present in very low numbers.
Another possible reason for the weak models is that our
model of erosion potential (i.e., Compound Topographic
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Fic. 5. Plots showing the cumulative occurrence of dense
mid-story vegetation cover patches (%) in areas of (a) low, (b)
moderate, and (c) high fire severity. The dashed gray line shows
the 95th percentile of cumulative patch occurrence. Dense mid-
story vegetation patches represented all 10 x 10 m cells with
vegetation cover values between 0.5-3.0 m > 20 that shared a
straight edge.

Index) was very coarse. The park experienced very heavy
rain and a massive erosion event only 5 d after the fire,
which we expect to have redistributed many seeds. How-
ever, our erosion variable, which relies on a 5-m digital ele-
vation model, would not have captured the micro-scale
sites where seeds may be retained or deposited (such as
depressions around piles of small rocks).
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LiDAR to assess mid-story regrowth

The use of LiIDAR to measure forest structure has a
history dating back to the 1970s. LIDAR has been shown
to be a very accurate tool for measuring and mapping
many aspects of vegetation structure (Brosofske et al.
2014), and it has been described as a transformative tech-
nology in this respect (Harpold et al. 2015). LiDAR pre-
cision was moderate to high in our study with up to 56%
of the variance in LiDAR cover explained by field cover.
There are many reasons why these relationships were not
even higher, including the low pulse density LiDAR data
used here, inaccuracies associated with the field surveys
and/or vegetation growth between the LiDAR and field
surveys. The LiDAR pulse density was sufficient to reli-
ably measure vegetation cover even at a 10 x 10 m cell
resolution (80-380 point returns would have been pre-
sent, even at 40% tree canopy cover) and care was taken
during field surveys to correctly assess vegetation cover.
Therefore, errors associated with these factors should
have been low. It is more likely that vegetation growth in
the 11-month interim between the LiIDAR and field sur-
veys was responsible for this reduced precision, either via
the amount of regrowth (field observations suggest that
regenerating seeding’s grew up to 1 m during this period
meaning that some of the vegetation present between 0.5
and 3.0 m at the time of the LiDAR survey would have
exceeded 3.0 m at the time of the field survey and some
of the vegetation <0.5 m at the time of the LiDAR sur-
vey would have been present between 0.5 and 3.0 m at
the time of the field survey) and/or differences in the rate
of regrowth (due to fine-scale differences in nutrient
availability, topography or microclimate). Given that we
observed relatively high R? values in our field validation
exercise despite these errors, we would argue that our
LiDAR data was an apt representation of on-ground
vegetation cover.

Despite high precision, accuracy was low, with a con-
sistent underestimation of field cover scores by a factor
of ~2. Underestimation of cover by LiDAR has been
observed before (Glenn et al. 2011, Wasser et al. 2013).
We have applied this methodology to long-unburned
eucalypt forests and found only slight underestimation
(Price and Gordon 2016). In this study, underestimation
is most likely due to the growth of the plants between
the time of LiDAR survey and field measurements; i.e.,
vegetation would have grown thicker and taller and this
would have resulted in higher cover scores during the
field than LiDAR survey. It might also be because small
or pendulous leaves did not trigger a return. This kind
of bias presumably varies across plant species and is
worthy of further research.

The LiDAR-derived maps present here have potential
application to measure current or future fire hazard. Cur-
rently, fuel hazard is estimated by one of two methods.
Overall fuel hazard is a commonly used visual assessment
method, which rates fuel hazard from four strata (surface,
near surface, elevated, and bark; McCarthy et al. 1999) at
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Fic. 6. Map showing spatial clustering of dense mid-story vegetation patches as assessed by the Getis-Ord test statistic. Blue
polygons (90th percentile confidence level; small polygon 90%) represent areas where small patches are grouped around other small
polygons. Green polygons (random) represent locations where small and large polygons are randomly distributed (i.e., a nonsignifi-
cant Getis-Ord test statistic). Pink (90th percentile confidence level; large polygon 90%), orange (95th percentile confidence level;
large polygon 95%) and red (99th percentile confidence level; large polygon 99%) polygons represent areas where larger patches are
grouped around other larger patches. Dense mid-story vegetation patches represented all 10 x 10 m cells with vegetation cover
values between 0.5-3.0 m >20% that shared a straight edge. [Color figure can be viewed at wileyonlinelibrary.com]

a single site without spatial information. Fuel hazard
maps usually use a combination of vegetation type and
time-since-fire (Bradstock et al. 2012, Price et al. 2015).
Our study has shown that fuel recovery can vary greatly
at small scales suggesting that time-since-fire is not a
good surrogate. LIDAR gives a fine-scale and precise
measure of elevated and tree cover (though not bark haz-
ard directly), and potentially can measure near-surface
cover (material above the ground but <50 cm). LiDAR
cannot measure surface fuels (leaf litter, twigs, etc.), but
to some extent, these can be predicted from the cover at

higher strata (Jakubowksi et al. 2013, Price and Gordon
2016). In any case, in eucalypt forests of southeastern
Australia, surface fuel loads generally reach hazardous
levels within 3 yr post-fire (Watson 2012) and so can gen-
erally be considered to be high for all but recently burned
forests. Given the imprecise nature of the overall fuel haz-
ard score, it is likely that LIDAR measures will be equally
accurate and more useful given the large spatial areas and
fine scale that can be mapped quickly. However, the
LiDAR cover values appear to be an underestimate of
actual cover, and so would underestimate risk if used



July 2017

without a correction factor. More research is required
into this phenomenon.

CONCLUSION

Mid-story vegetation regrowth was vigorous but extre-
mely patchy after this fire. Regrowth cover was positively
associated with fire severity at each of the spatial resolu-
tions assessed here and was a relatively important bio-
physical predictor of mid-story cover. Most likely, high-
severity fire set the conditions for strong plant growth
via breaking seed dormancy, but also by other processes
such as reducing competition with trees. Although our
main hypothesis was supported, much of the reasons for
the vigor of regrowth and its spatial distribution remain
unexplained. This suggests that environmental history
attributes not measured here (i.e., seed responses of indi-
vidual plants) strongly influenced the spatial architecture
of vegetation regrowth.

Knowledge of vegetation growth following fire is of
paramount important for fire management actions
because the amount and connectivity of vegetation (i.e.,
fire fuels) strongly influences rates of fire ignition and
spread. Our results suggest that fire hazard will remain
relatively low within this landscape if vegetation patches
remain isolated from one another. Our results also show
the utility of LiDAR data for fuel load and fire hazard
mapping over large spatial areas at fine-spatial scales.
Therefore, repeated use of LIDAR has great potential as
a monitoring tool for investigating the longer term spa-
tiotemporal patterns of post-fire vegetation recovery.
This information will be of paramount important for fire
management actions that aim to conserve biodiversity
but also mitigate human losses due to wildfire.
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