47 research outputs found

    Processing of oat: the impact on oat's cholesterol lowering effect

    Get PDF
    Epidemiological and interventional studies have clearly demonstrated the beneficial impact of consuming oat and oat-based products on serum cholesterol and other markers of cardiovascular disease. The cholesterol-lowering effect of oat is thought to be associated with the β-glucan it contains. However, not all food products containing β-glucan seem to lead to the same health outcome. Overall, highly processed β-glucan sources (where the oat tissue is highly disrupted) appear to be less effective at reducing serum cholesterol, but the reasons are not well understood. Therefore, the mechanisms involved still need further clarification. The purpose of this paper is to review current evidence of the cholesterol-lowering effect of oat in the context of the structure and complexity of the oat matrix. The possibility of a synergistic action and interaction between the oat constituents promoting hypocholesterolaemia is also discussed. A review of the literature suggested that for a similar dose of β-glucan, (1) liquid oat-based foods seem to give more consistent, but moderate reductions in cholesterol than semi-solid or solid foods where the results are more variable; (2) the quantity of β-glucan and the molecular weight at expected consumption levels (∼3 g day−1) play a role in cholesterol reduction; and (3) unrefined β-glucan rich oat-based foods (where some of the plant tissue remains intact) often appear more efficient at lowering cholesterol than purified β-glucan added as an ingredient

    Evaluation of deep learning methods for industrial automation

    No full text
    The rise and adaptation of the transformer architecture from natural language processing to visual tasks have proven a useful and powerful tool. Subsequent architectures such as visual transformers (ViT) and shifting window (SWIN) transformers have proven to be comparable and oftentimes exceed convolutional neural networks (CNNs) in terms of accuracy. However, for mobile vision tasks and limited hardware, the computational complexity of the transformer architecture is an impediment. This project aims to answer the question of whether the Swin Transformer can be adapted towards lightweight and low latency classification as a basis for industrial automation, and how it compares to CNNs for a specific task. A case study from the logging industry, binary classification of wooden boards on chain conveyors, will serve as the basis of this evaluation. For these purposes, a novel dataset has been collected and annotated. The results of this project include an overview of the respective architectures and their performance for different implementations on the classification task. Both architectures exhibited sufficient accuracy, while the CNN models performed best for the specific case study

    Evaluation of deep learning methods for industrial automation

    No full text
    The rise and adaptation of the transformer architecture from natural language processing to visual tasks have proven a useful and powerful tool. Subsequent architectures such as visual transformers (ViT) and shifting window (SWIN) transformers have proven to be comparable and oftentimes exceed convolutional neural networks (CNNs) in terms of accuracy. However, for mobile vision tasks and limited hardware, the computational complexity of the transformer architecture is an impediment. This project aims to answer the question of whether the Swin Transformer can be adapted towards lightweight and low latency classification as a basis for industrial automation, and how it compares to CNNs for a specific task. A case study from the logging industry, binary classification of wooden boards on chain conveyors, will serve as the basis of this evaluation. For these purposes, a novel dataset has been collected and annotated. The results of this project include an overview of the respective architectures and their performance for different implementations on the classification task. Both architectures exhibited sufficient accuracy, while the CNN models performed best for the specific case study

    Improved iron bioavailability in an oat-based beverage: the combined effect of citric acid addition, dephytinization and iron supplementation

    No full text
    Background Iron deficiency in children is a major worldwide nutritional problem. An oat beverage was developed for 1- to 3-year-old children and different treatments were used to improve the iron bioavailability. Aim of the study To investigate the effects of citric acid addition, phytase treatment and supplementation with different iron compounds on non-heme iron absorption in human from a mineral-supplemented oat-based beverage. Method A 240 g portion of a Fe-55-labeled test product (T) or a Fe-59-labeled reference dose (R) was served as breakfast after overnight fasting on four consecutive days in the order of TRRT. On day 18 the retention of Fe-59 was measured by a whole-body counter and the erythrocytes uptake of Fe-55 and Fe-59 by a liquid-scintillation counter. Forty-two healthy subjects (men and women) were randomized into four study groups, members of each being given one of the studied four products (A, B, C, and D) supplemented with Fe (1.3 mg/portion), Zn, Ca, Se and P. Ferric ammonium citrate (FeAC) was added to products A, B, and C and ferric pyrophosphate (FePP) to product D. Citric acid (60 mg/portion) was added to products B, C, and D and phytase treatment applied to products C and D. Results Citric acid improved iron absorption by 54% from 3.9% in product A to 6.0% in product B (p = 0.051). Phytase treatment increased iron absorption by 78% (from 6.0 to 10.7%, p = 0.003) by reducing the phytate-phosphorus content per portion from 16.3 mg in product B to 2.8 mg in product C. The two compounds gave similar iron absorption rates (p = 0.916). Conclusion A combination of citric acid addition, dephytinization and iron supplementation significantly increased the iron absorption in an oat-based beverage. Such a beverage can be useful in the prevention of iron deficiency in 1- to 3-year-old children

    Beta-glucan incorporated into a fruit drink effectively lowers serum LDL-cholesterol concentrations

    No full text
    Background: beta-Glucan can reduce serum concentrations of total and LDL cholesterol. The mechanism of this action is not clear, however, and it is difficult to predict the cholesterol-lowering effect of a food product enriched with beta-glucan. Objectives: We examined the effects of a beta-glucan-enriched fruit juice on serum lipids and lipoproteins and on markers of cholesterol absorption (serum concentrations of plant sterols) and synthesis (serum concentrations of lathosierol). In addition, we measured effects on lipid-soluble antioxidants. Design: After a 3-wk run-in period, healthy subjects consumed daily a fruit drink providing 5 g rice starch [placebo (control) group; n = 22] or beta-glucan from oats (n = 25) for 5 wk (parallel design). At the end of the run-in period and at the end of the intervention, blood samples were taken for analysis of lipids and lipoproteins, noncholesterol sterols, and fat-soluble antioxidants. Changes between the end of the run-in period and the end of the intervention were calculated for each subject. Differences in changes between the groups were analyzed statistically. Results: The differences between the control and beta-glucan groups in the chance in serum concentrations of total and LDL cholesterol, respectively, were -4.8% (P = 0.012) and -7.7% (P = 0.005). The differences between the groups in the change in serum concentrations of lathosterol and sitosterol were -13% (P = 0.023) and -11 % (P = 0.030), respectively. No significant effects were found on fat-soluble antioxidants. Conclusions: beta-Glucan lowers serum concentrations of total and LDL cholesterol when incorporated into a fruit drink. A reduced cholesterol absorption contributes to the cholesterol-lowering effect of beta-glucan without affecting plasma concentrations of lipid-soluble antioxidants

    Beta-glucan incorporated into a fruit drink effectively lowers serum LDL-cholesterol concentrations

    No full text
    BACKGROUND: beta-Glucan can reduce serum concentrations of total and LDL cholesterol. The mechanism of this action is not clear, however, and it is difficult to predict the cholesterol-lowering effect of a food product enriched with beta-glucan. OBJECTIVES: We examined the effects of a beta-glucan-enriched fruit juice on serum lipids and lipoproteins and on markers of cholesterol absorption (serum concentrations of plant sterols) and synthesis (serum concentrations of lathosterol). In addition, we measured effects on lipid-soluble antioxidants. DESIGN: After a 3-wk run-in period, healthy subjects consumed daily a fruit drink providing 5 g rice starch [placebo (control) group; n = 22] or beta-glucan from oats (n = 25) for 5 wk (parallel design). At the end of the run-in period and at the end of the intervention, blood samples were taken for analysis of lipids and lipoproteins, noncholesterol sterols, and fat-soluble antioxidants. Changes between the end of the run-in period and the end of the intervention were calculated for each subject. Differences in changes between the groups were analyzed statistically. RESULTS: The differences between the control and beta-glucan groups in the change in serum concentrations of total and LDL cholesterol, respectively, were -4.8% (P = 0.012) and -7.7% (P = 0.005). The differences between the groups in the change in serum concentrations of lathosterol and sitosterol were -13% (P = 0.023) and -11% (P = 0.030), respectively. No significant effects were found on fat-soluble antioxidants. CONCLUSIONS: Beta-glucan lowers serum concentrations of total and LDL cholesterol when incorporated into a fruit drink. A reduced cholesterol absorption contributes to the cholesterol-lowering effect of beta-glucan without affecting plasma concentrations of lipid-soluble antioxidants

    Antihypertensive activity of blueberries fermented by Lactobacillus plantarum DSM 15313 and effects on the gut microbiota in healthy rats.

    No full text
    The aim of the present animal study was to examine the anti-hypertensive capacity of two probiotic products combining blueberries and the tannase producing probiotic bacteria Lactobacillus plantarum DSM 15313 and to investigate if such an effect is linked to a change in the gut microbiota

    Exogenous and locally synthesized angiotensin II and glomerulosa cell functions.

    No full text
    corecore